LEDBAT++: Congestion Control for Background Traffic

ICCRG, IETF 105

Praveen Balasubramanian, Osman Ertugay, Daniel Havey
LEDBAT (RFC 6817) Recap

• Minimize the impact of “lower than best effort” connections on the latency and bandwidth of other connections
• Compare measured delay with the “minimum” delay
• If delay is less than target, additive increase
• If delay is higher than target, additive decrease
• No strict requirements on slow start (suggestion to avoid)
• React to packet loss and ECN like standard TCP
Problems with LEDBAT

• One-way delay measurements are hard with TCP
 • No standard clock frequency or synchronization
 • Clock skew

• Latecomer advantage
 • Reliance on inherent burstiness of network traffic

• Inter-LEDBAT fairness
 • Proportional feedback uses both additive increases decreases, stable queue but no fair sharing
 • Carofiglio, G. et al. “Rethinking the Low Extra Delay Background Transport (LEDBAT) Protocol”

• Vague recommendations regarding slow start

• Latency drift
 • Impacts long running LEDBAT connections

• Low latency competition
 • If bandwidth is large, queueing delay never exceeds the fixed target
LEDBAT++

• Congestion control algorithm for TCP

• LEDBAT++ comprises of the following
 • Round trip latency measurements
 • Slower than Reno cwnd increase with adaptive gain factor
 • Multiplicative cwnd decrease with adaptive reduction factor
 • Modified slow start
 • Initial and periodic slowdown

• Part of Windows 10 since Anniversary Update

• Currently in use by Windows Error Reporting, Windows Update Delivery Optimization, and System Center Configuration Manager
Round trip latency

• Advantages
 • Already available in TCP
 • No need for clock synchronization

• Disadvantages
 • Incorporates queuing delay in both directions
 • Receiver delays and delayed ACKs

• Mitigations
 • Erring on the side of higher latency estimation is acceptable
 • Enable TCP timestamp option implicitly for LEDBAT connections
 • Filter the RTT samples (minimum of the 4 most recent samples)
 • Use a TARGET delay of 60 ms
 • Larger than typical* server ACK delay (50ms)
 • 100 msec consumes 2/3rd of budget for 150 msec maximum acceptable delay for VoIP
Slower than Reno

• Reno
 • On packet loss: $W -= W/2$
 • On packet acknowledgement: $W += 1/W$

• Introduce a reduction factor F:
 • On packet loss: $W -= W/2$
 • On packet acknowledgement: $W += 1/(F*W)$

• Throughput of LEDBAT++ connection will be a fraction $(1/SQRT(F))$ of the throughput of regular TCP connection

• Based on experimentation we picked an Adaptive scheme for F
 • $F = \min (16, \text{CEIL}(2*\text{TARGET/base}))$
 • 16 is a good tradeoff between responsiveness and performance

• Solves low latency competition problem
Multiplicative Decrease

- Carofiglio, G. et al “Rethinking the Low Extra Delay Background Transport (LEDBAT) Protocol” suggest multiplicative decrease

<table>
<thead>
<tr>
<th></th>
<th>Standard LEDBAT, per RTT</th>
<th>Multiplicative decrease, per RTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay lower than target</td>
<td>W += Gain * (1 – delay/target)</td>
<td>W += Gain</td>
</tr>
<tr>
<td>Delay larger than target</td>
<td>W -= Gain * (delay/target - 1)</td>
<td>W += Gain – Constant * W * (delay/target - 1)</td>
</tr>
</tbody>
</table>

- Only works when all connections measure same base delay, so
 - Use constant value of 1 and cap the multiplicative decrease coefficient to be at least 0.5
 - Ensure that cwnd never decreases below 2 packets
- Solves the Inter-LEDBAT fairness problem
Modified slow start

• Skipping slow start results in really poor performance on long delay links

• Slower than Reno ramp up
 • Apply the reduction factor F to the congestion window increases
 • Limit the initial cwnd to 2 packets

• If queuing delay is larger than $3/4$ths of the TARGET, exit slow start
 • Immediately move to the “congestion avoidance” phase

• Only apply the “exit on excessive delay” during the initial slow start
 • Subsequent slow starts capped by recorded ssthresh
Initial and periodic slowdown

- Traffic is sustained for long periods
 - Inaccurate base delay estimates
 - Causes latency drift as well as the lack of inter-LEDBAT fairness

- Force gaps for measuring base delay, or “slowdown” periods
 - “slowdown” is an interval during which the LEDBAT++ connection voluntarily reduces its traffic
 - Upon entering slowdown, set ssthresh = cwnd, and reduce cwnd to 2 packets
 - Keep CWND frozen at 2 packets for 2 RTT
 - After 2 RTT, ramp up according to “slow start” until cwnd reaches ssthresh

- Initial slowdown 2*RTT after first slow start exit

- Periodic slowdown – not more than 10% drop in throughput
 - Measure duration of slowdown from entry to ramp up to ssthresh
 - Schedule next slowdown 9 times this duration

- Solves the latency drift problem
Next Steps

- draft-balasubramanian-iccrg-ledbatplusplus-00 submitted
- RAND-Z IPR disclosure coming up

- Adopt document in iccrg?