IPv6 Support for Segment Routing: SRv6+

draft-bonica-spring-srv6-plus-04
R. Bonica, S. Hegde, Y. Kamite, A. Alston, D. Henriques, J. Halpern, J. Linkova, G. Chen
What Problem Are We Solving?

• Implement the Segment Routing architecture
 • Encode path state in each packet
 • So that transit routers do not need to maintain per path state
• Implement programmable SR paths
• Rely exclusively upon IPv6 data plane
 • No MPLS
 • Leverage existing IPv6 features
• Minimize SR overhead
 • Bandwidth resources
 • ASIC resources
Terminology
Paths

• Provide unidirectional connectivity from ingress node to egress node
• Can follow any route through the network
 • Least cost
 • Traffic engineered
• Contain one or more segments
• Programmable
• Defined by the segments that they contain
Segments

• Provide unidirectional connectivity from ingress node to egress node
• *Programmable*
• Behavior is controlled by a topological instruction
 • Executed on segment ingress node
 • Defines egress node
 • Defines method by which ingress node forwards packets to egress node
• Defined by ingress node and topological instruction
• Can be contained by multiple paths
Exactly Two Segment Types

• Strictly-Routed
 • Similar to adjacency segment
 • Topological instruction causes ingress node to forward packets through a specified interface to the egress node

• Loosely-Routed
 • Similar to node segment
 • Topological instruction causes ingress node to forward packets through the least cost path to the egress node
Segment Identifiers (SID)

• Identify a segment
 • Because there is a one-to-one relationship between segments and the topological instructions that control them, the SID that Identifies a segment also identifies the topological instruction that controls it

• Identifies, but does not contain a topological instruction
 • Therefore, can be encoded in relatively few bits
 • 16 and 32 bit options

• Node-local significance
 • Only processed by one node
 • To facilitate debugging, SIDs can be assigned in a manner that gives them domain-wide significance
Service Instructions

• Augment, but do not define a path or segment

• Per-Segment Service Instructions
 • Executed on segment egress node
 • Examples
 • Expose a packet to a firewall policy
 • Expose a packet to a sampling policy

• Per-Path Service Instructions
 • Executed on the path egress node
 • Examples
 • De-encapsulate a packet and forward the payload over a specified VPN link
 • De-encapsulate a packet and forward the payload using a specified routing table
Paths, Segments and Instructions

<table>
<thead>
<tr>
<th>Node</th>
<th>----</th>
<th>Node</th>
<th>----</th>
<th>Node</th>
<th>----</th>
<th>Node</th>
<th>----</th>
<th>Node</th>
<th>----</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Segment A-C
Segment C-D

SRv6+ Path
Encoding SRv6+ Paths as IPv6 Header Chains
The IPv6 Extension Header Chain

• IPv6 source nodes encode additional internet-layer information in extension headers
• RFC 8200 defines a small number of extension headers
• The IPv6 header and each extension header contain a Next Header field
 • So, extension headers can be chained together
• Extension headers are processed in the order that they appear in a packet
• RFC 8200 specifies an order in which extension headers should appear
Extension Header Ordering

• Processed by every hop along the path from source to destination
 • Hop-by-hop
• Processed by segment endpoints only
 • Destination Options (preceding Routing header)
 • Routing header
• Processed by ultimate destination only
 • Fragment
 • Authentication
 • Encapsulated Security Payload (ESP)
 • Destination Option (preceding upper-layer header)
Routing Header Defines Segmented Path

• Routing header contains (among other things)
 • Segment List – List of segment endpoints to be traversed on route to destination
 • Segments Left – Number of segments still to be traversed
• Ignore if Segments Left equals zero
• Process if Segments Left is greater than zero
 • Decrement Segments Left
 • Overwrite IPv6 Destination address with address derived from Segment List member referenced by Segments Left
 • Forward
Routing Header Barrier To Deployment

• All Routing headers contain 8 bytes of overhead
• Most Routing headers represent segments as 16 bytes
• So, a Routing header that represents a 5 segment path contains 72 byte
• Large Routing headers
 • Consume bandwidth
 • Are ASIC unfriendly
Compressed Routing Header

• SRv6+ defines a new Routing header type, called the Compressed Routing Header (CRH)
• Encodes Segment Identifiers (SID) in 16 or 32 bits
• SID Forwarding Information Base (SFIB) translates SID into
 • An IPv6 address to be copied into the IPv6 Destination Address field
 • An instruction that determines how the packet will be forwarded to the destination (strict or loose forwarding)
• Yes, computer science problems can be solved with one more layer of indirection
CRH With 16-Bit Encoding

-----------------|-----------------|-----------------|-----------------|-----------------
| 0 | 1 | 2 | 3 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
+-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| Next Header | Hdr Ext Len | Routing Type | Segments Left | +-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
+-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| Last Entry | Com | Reserved | +-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
+-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| SID[0] | SID[1] | +-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
+-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+
| |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
+-------------------------------+-------------------------------+-------------------------------+-------------------------------+-------------------------------+

Juniper Business Use Only
CRH With 32-Bit Encoding
Encoding Service Instructions in Destination Options

• Per Segment Service Instructions
 • SRv6+ defines a new option, call the Per Segment Service Instruction Option
 • Encoded in Destination Option header that precedes the Routing header
 • Carries a 32-bit instruction identifier
 • Skip when unrecognized – first two bits of option identifier are 00

• Per Path Service Instructions
 • SRv6+ defines a new option, call the Per Path Service Instruction Option
 • Encoded in Destination Option header that precedes the upper-layer header
 • Carries a 32-bit instruction identifier
 • Discard packet when unrecognized – first to bits of option identifier are 10
Related Work

• Draft-bonica-6man-comp-rtg-hdr
• Draft-bonica-6man-vpn-dest-opt
• Draft-bonica-6man-seg-end-opt
• Draft-bonica-lsr-crh-isis-extensions
• Draft-sangli-idr-vpn-service-srv6-plus
• Draft-elson-spring-crh-bgp-signalling
Implementation

• JUNOS PoC
• LINUX Demo
Next Steps

• SPRING WG to adopt draft-bonica-spring-srv6-plus
• 6man WG to adopt
 • Draft-bonica-6man-com-rtg-hdr
 • Draft-bonica-6man-vpn-dest-opt
 • Draft-bonica-6man-seg-end-opt