Christian Hopps LabN Consulting, LLC ## IP Traffic Flow Security Improving IPsec Traffic Flow Confidentiality IETF 105 – draft-hopps-ipsecme-iptfs-01 Update #### Bandwidth Efficiency (I-Mix) ### Why is this Needed? - Current Solution: ESP + Padding 1:1 - Not Deployable. #### Solution Cost (I-Mix) | | ESP +
Pad | IPTFS | Enet | |---------------------|--------------|-------|-------| | Bandwidth
Used | 1Gb | 1Gb | 1Gb | | I-Mix
Throughput | 219Mb | 943Mb | 672Mb | ## Update From version-00 - Updates based on comments received on mailing list and during IETF104 from ipsecme and TSV folks. - IKEv2 TFS Type transform type introduced. - Notification Status Message for indicating dont-fragment. - Congestion Control information is now in-band, instead of using IKE. - Congestion Control information and text changed to align with published TCP friendly congestion control algorithms. - Appendix illustrating how to implement TCP friendly CC algorithm. ## New IKEv2 Transform Type — TFS - New Transform Type "TFS Type" (TBD 6?). - 0 None. - 1 TFS_IPTFS_CC (congestion controlled). - 2 TFS_IPTFS_NOCC (non-congestion controlled). - Used during Child SA establishment (SA_INIT and CREATE_CHILD_SA) ## New IPTFS_REQUIREMENTS Notify Message - Sent during SA_INIT (or CHILD_CREATE) when accepting TFS transform to indicate the sender should only aggregate and not fragment packets. - 1 octet of flag data. • 1 bit defined – "D bit" for don't Fragment. ## IP-TFS (updated) Packet Format ``` . Outer Encapsulating Header ESP Header... Reserved | BlockOffset | V | C | [Optional Congestion Info] Data Blocks Payload ESP Trailer... ``` ### ESP Congestion Control Payload Format - C:: Congestion Control set to 1 for this format, 0 for Non-CC. - **E** :: ECN bit were used in calculating the **LossEventRate**. - RTT :: Sender's round trip time estimate in milliseconds. - Delay: Millisecond estimate between receiver receiving LastSeqNum, and sending this info. - LossEventRate :: 1/LossEventRate is the receivers calculation of the current loss event rate - LastSeqNum :: The latest sequence number received by the receiver. ## TCP Friendly Congestion Control - Update the Congestion Control section to align with RFCs - RFC5348 TCP Friendly Rate Control (TFRC): Protocol Specification - RFC4342 Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate Control (TFRC) - RFC3168 The Addition of Explicit Congestion Notification (ECN) to IP - Added Appendix with directions on how to implement CC. - Describes how to use IPTFS CC information in standard formula - $pps=1/R\sqrt{\Box 2p/3} + 12\sqrt{\Box 3p/8} \cdot p(1+32p/2)$ - Can be used with references RFCS to implement TCP friendly congestion control. ## Summary - Updated based on WG comments. - Congestion control - Don't Fragment - Update based on implementation experience. - IKEv2 Transform Type - CC Algorithm implementation guidance. - Ready for WG Adoption? # Questions and Comments # Backup Slides ### Key Design Points - Improve on existing IPsec (ESP + Padding) option. - Fragment and Aggregate inner packets. - Fixed-size encapsulating packets. - Constant send rate. - Unidirectional. - Congestion Controlled and Non-CC operating modes. - Uses IPsec/ESP. - [Optional] IKEv2 Additions. - Minimize configuration required. # Comparison Data ## Overhead Comparison in Octets | | Type | ESP+Pad | ESP+Pad | ESP+Pad | IP-TFS | IP-TFS | IP-TFS | | |--|--------|---------|---------|-----------|--------|---------|---------|--| | | L3 MTU | 576 | 1500 | 9000 | 576 | 1500 | 9000 | | | | PSize | 540 | 1464 | 8964 | 536 | 1460 | 8960 | | | | | | | - | + | | | | | | 40 | 500 | 1424 | 8924 | 3.0 | 1.1 | 0.2 | | | | 128 | 412 | 1336 | 8836 | 9.6 | 3.5 | 0.6 | | | | 256 | 284 | 1208 | 8708 | 19.1 | 7.0 | 1.1 | | | | 536 | 4 | 928 | 8428 | 40.0 | 14.7 | 2.4 | | | | 576 | 576 | 888 | 8388 | 43.0 | 15.8 | 2.6 | | | | 1460 | 268 | 4 | 7504 | 109.0 | 40.0 | 6.5 | | | | 1500 | 228 | 1500 | 7464 | 111.9 | 41.1 | 6.7 | | | | 8960 | 1408 | 1540 | 4 | 668.7 | 245.5 | 40.0 | | | | 9000 | 1368 | 1500 | 9000 | 671.6 | 246.6 | 40.2 | | ## Overhead as Percentage of Inner Packet | Type
 MTU
 PSize | ESP+Pad
 576
 540 | ESP+Pad
 1500
 1464 | ESP+Pad
 9000
 8964 | IP-TFS
 576
 536 | IP-TFS
 1500
 1460 | IP-TFS
9000
8960 | | |--------------------------|---------------------------|-----------------------------|-----------------------------|--------------------------|----------------------------|------------------------|---| | 40 | 1250.0% | 3560.0% | 22310.0% | 7.46% | 2.74% | 0.45% | | | 128 | 321.9% | 1043.8% | 6903.1% | 7.46% | 2.74% | 0.45% | Ī | | 256 | 110.9% | 471.9% | 3401.6% | 7.46% | 2.74% | 0.45% | Ī | | 536 | 0.7% | 173.1% | 1572.4% | 7.46% | 2.74% | 0.45% | Ī | | 576 | 100.0% | 154.2% | 1456.2% | 7.46% | 2.74% | 0.45% | | | 1460 | 18.4% | 0.3% | 514.0% | 7.46% | 2.74% | 0.45% | | | 1500 | 15.2% | 100.0% | 497.6% | 7.46% | 2.74% | 0.45% | | | 8960 | 15.7% | 17.2% | 0.0% | 7.46% | 2.74% | 0.45% | | | 9000 | 15.2% | 16.7% | 100.0% | 7.46% | 2.74% | 0.45% | | ## Bandwidth Utilization over Ethernet | | Enet | ESP | E + P | E + P | E + P | IPTFS | IPTFS | IPTFS | | |------|-------|-------|-------|-------|-------|-------|-------|-------|--| | | any | any | 590 | 1514 | 9014 | 590 | 1514 | 9014 | | | Size | 38 | 74 | 74 | 74 | 74 | 78 | 78 | 78 | | | | + | + | | + | ++ | | | + | | | 40 | 47.6% | 35.1% | 6.5% | 2.6% | 0.4% | 87.3% | 94.9% | 99.1% | | | 128 | 77.1% | 63.4% | 20.8% | 8.3% | 1.4% | 87.3% | 94.9% | 99.1% | | | 256 | 87.1% | 77.6% | 41.7% | 16.6% | 2.8% | 87.3% | 94.9% | 99.1% | | | 536 | 93.4% | 87.9% | 87.3% | 34.9% | 5.9% | 87.3% | 94.9% | 99.1% | | | 576 | 93.8% | 88.6% | 46.9% | 37.5% | 6.4% | 87.3% | 94.9% | 99.1% | | | 1460 | 97.5% | 95.2% | 79.3% | 94.9% | 16.2% | 87.3% | 94.9% | 99.1% | | | 1500 | 97.5% | 95.3% | 81.4% | 48.8% | 16.6% | 87.3% | 94.9% | 99.1% | | | 8960 | 99.6% | 99.2% | 81.1% | 83.2% | 99.1% | 87.3% | 94.9% | 99.1% | | | 9000 | 99.6% | 99.2% | 81.4% | 83.6% | 49.8% | 87.3% | 94.9% | 99.1% | | ## Latency - Latency values seem very similar - IP-TFS values represent max latency - IP-TFS provides for constant high bandwidth - ESP + padding value represents min latency - ESP + padding often greatly reduces available bandwidth. | | ESP+Pad
1500
 | ESP+Pad
9000 | IP-TFS
1500 | IP-TFS
9000
 | |------|-------------------------|-------------------|------------------|------------------------| | 40 | 1 14 us l | 7 14 uc | 1 17 uc | 7 17 us | | 40 | 1.14 us | 7.14 us | 1.17 us | 7.17 us | | 128 | 1.07 us | 7.07 us | 1.10 us | 7.10 us | | 256 | 0.97 us | 6.97 us | 1.00 us | 7.00 us | | 536 | 0.74 us | 6.74 us | 0.77 us | 6.77 us | | 576 | 0.71 us | 6.71 us | 0.74 us | 6.74 us | | 1460 | 0.00 us | 6.00 us | 0.04 us | 6.04 us | | 1500 | 1.20 us | 5.97 us | 0.00 us | 6.00 us | ### Data Blocks ``` 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 ``` #### Version - 0x0 for pad. - 0x4 for IPv4. - 0x6 for IPv6. #### IPv4 Data Blocks ``` 1 2 3 4 5 6 7 8 9 0 1 2 3 ``` - **Version** :: 0x4 for IPv4. - Total Length :: Length of the IPv4 inner packet. ### IPv6 Data Blocks ``` 1 2 3 4 5 6 7 8 9 0 1 2 3 ``` - Version :: 0x6 for IPv6. - **Total Length** :: Length of the IPv4 inner packet. ### Pad Data Blocks ``` 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 4 5 6 7 8 9 0 1 2 3 4 ``` - **Version** :: 0x0 for Padding. - Padding :: extends to end of the encapsulating packet. ### Related Work – IEEE - An Ethernet TFS problem statement along with high level requirements were presented to the 802.1 Security Task Force at March 2019 meeting. - http://www.ieee802.org/1/files/public/docs2019/new-fedyk-traffic-flow-security-0219.pdf - The group discussed complementary amendments to 802.1AE Media Access Control (MAC) Security (MACsec) to address the requirements and fit with existing MACsec. - Progress on the above is anticipated in upcoming interim meetings. ## Running Code - https://github.com/LabNConsulting/iptfs [will be present by meeting] - Proof-of-concept code. - IP in UDP tunnel encapsulation. - UDP stands in for ESP - Implements new IP-TFS payload. - Inner packet fragmentation and aggregation using Datablocks - Implements Congestion Control Info Reports. - Sent in UDP rather than IKEv2. - Auto-adjusts send rate correctly based on congestion. - 2 implementations (Python and C). ### References - [AppCrypt] B. Schneier, "Applied Cryptography: Protocols, Algorithms, and Source Code in C", Nov, 2017. - [I-D.iab-wire-image] B. Trammell, M. Kuehlewind, "The Wire Image of a Network Protocol", Nov 05, 2018 - https://datatracker.ietf.org/doc/draft-iab-wire-image - [USENIX] R. Schuster, V. Shmatikov, and E. Tromer, "Beauty and the Burst: Remote Identification of Encrypted Video Streams" 26th USENIX Security Symposium, August 16–18, 2017, Vancouver, BC, Canada - https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster