
Quantum Resistant
IKEv2 Update

draft-tjhai-ipsecme-hybrid-qske-ikev2-04

C. Tjhai, M. Tomlinson Post-Quantum, G. Bartlett, S. Fluhrer Cisco Systems,
D. Van Geest ISARA Corporation, O. Garcia-Morchon Philips,

V. Smyslov ELVIS-PLUS

IETF 105

• Quantum Computers will make classical (EC)DH insecure

• Quantum Safe Key Exchange methods (QSKE) are not well
studied yet and currently no single QSKE method is trusted
by cryptographers

o besides most of QSKE methods have large public keys

• The idea is to make it possible in IKEv2 to perform several
different key exchanges in a row, combining classical KE
methods with quantum safe ones

o it is assumed that combination of QSKE methods of different types is more
secure than any of them alone

Protocol Overview

2

• Additional KEs are negotiated in IKE_SA_INIT and performed in a series of
new IKE_INTERMEDIATE exchanges between IKE_SA_INIT and IKE_AUTH

Initiator Responder

HDR(IKE_SA_INIT), SA, Ni, KEi, N --> <-- HDR(IKE_SA_INIT), SA, Nr, KEr, N

HDR(IKE_INTERMEDIATE), SK {Ni(1), KEi(1)} --> <-- HDR(IKE_INTERMEDIATE), SK {Nr(1), KEr(1)}

HDR(IKE_INTERMEDIATE), SK {Ni(2), KEi(2)} --> <-- HDR(IKE_INTERMEDIATE), SK {Nr(2), KEr(2)}

HDR(IKE_AUTH), SK {IDi, AUTH, TSi, TSr} --> <-- HDR(IKE_AUTH), SK {IDr, AUTH, TSi, TSr}

• After each exchange the IKE SA keys are updated

SKEYSEED for n-th IKE_INTERMEDIATE is computed as prf(SK_d(n-1), KE(n) | Ni(n) | Nr(n))

Then, SK_*(n) are updated as:

{SK_d(n) | SK_ai(n) | SK_ar(n) | SK_ei(n) | SK_er(n) | SK_pi(n) | SK_pr(n)} =

prf+ (SKEYSEED(n), Ni(n) | Nr(n) | SPIi | SPIr)

• All IKE_INTERMEDIATE exchanges are authenticated in IKE_AUTH by
inclusion prf of their content in AUTH payload calculation

Protocol Overview (2)

3

• Clarification is added that this framework can be used to
combine multiple key exchanges regardless whether they are
classical or quantum safe ones

• Using nonces in AUTH calculation is clarified (only nonces
from IKE_SA_INIT are used)

• Rekey collisions resolving is defined

• Key derivation in case of multiple key exchanges in
CREATE_CHILD_SA is defined

• IANA considerations are updated (rename)

Changes from -03 version

4

• Additional KEs are performed in a series of INFORMATIONAL
exchanges followed CREATE_CHILD_SA exchange

• New Notification ADDITIONAL_KEY_EXCHANGE is used to
link these exchanges, because they can be interleaved with
another IKE exchanges

• QSKEs are negotiated in the same manner as in IKE_SA_INIT

• New SA is created only when the last of INFORMATIONAL
exchanges is complete

Using QSKE in CREATE_CHILD_SA

5

Initiator Responder

HDR(CREATE_CHILD_SA), SK {SA, Ni, KEi} -->

 <-- HDR(CREATE_CHILD_SA), SK {SA, Nr, KEr,

 N(ADDITIONAL_KEY_EXCHANGE)(link1)}

HDR(INFORMATIONAL), SK {Ni2, KEi2,

N(ADDITIONAL_KEY_EXCHANGE)(link1)} -->

 <-- HDR(INFORMATIONAL), SK {Nr2, KEr2,

 N(ADDITIONAL_KEY_EXCHANGE)(link2)}

HDR(INFORMATIONAL), SK {Ni3, KEi3,

N(ADDITIONAL_KEY_EXCHANGE)(link2)} -->

 <-- HDR(INFORMATIONAL), SK {Nr3, KEr3}

Using QSKE in CREATE_CHILD_SA Example

6

• If peers start rekey process simultaneously then rekey
collision takes place, which resulted in creating two SAs

• IKEv2 handles rekey collisions by determining who is
“winner” and requiring “loser” to delete an extra SA created
by rekey started from her side

• In case of packets loss the situation is possible when only
one side notice the collision, in which case no extra SA is
created

Handling Rekey Collisions in IKEv2

7

• All collisions must be resolved in CREATE_CHILD_SA
exchange, following INFORMATIONAL exchanges must not be
affected

• Since with QSKE an SA is not yet created when
CREATE_CHILD_SA exchange is finished, the “loser” just
stops rekeying process by not initiating next
INFORMATIONAL exchange

Handling of Rekey Collisions with QSKE

8

• In situations when rekey collision takes place, but due to
packet loss peer receives CREATE_CHILD_SA requesting to
rekey an SA for which it has already completed its own
CREATE_CHILD_SA and started INFORMATIONAL(s) :

‐ send TEMPORARY_FAILURE notification

• If responder receives INFORMATIONAL with
ADDITIONAL_KEY_EXCHANGE notification containing data
that doesn’t correspond to any state it has:

‐ send STATE_NOT_FOUND notification (new non-fatal error notify)

Errors in CREATE_CHILD_SA with QSKE

9

• If IKE SA is rekeyed:
 SKEYSEED = prf (SK_d, KE | Ni | Nr | KE(1) | Ni(1) | Nr(1) ...

 | KE(n) | Ni(n) | Nr(n))

• If Child SA is rekeyed or created:
 KEYMAT = prf+ (SK_d, KE | Ni | Nr | KE(1) | Ni(1) | Nr(1) ...

 | KE(n) | Ni(n) | Nr(n))

Keys in CREATE_CHILD_SA with QSKE

10

• Do we need to exchange fresh nonces in every
IKE_INTERMEDIATE or we can reuse ones from IKE_SA_INIT
(the same for CREATE_CHILD_SA/INFORMATIONAL)?

‐ Ask CFRG?

Outstanding Issues

11

Thank you!

• Questions? Comments? Feedback?

• Requirements for QSKE methods?

• Document adoption?

12

