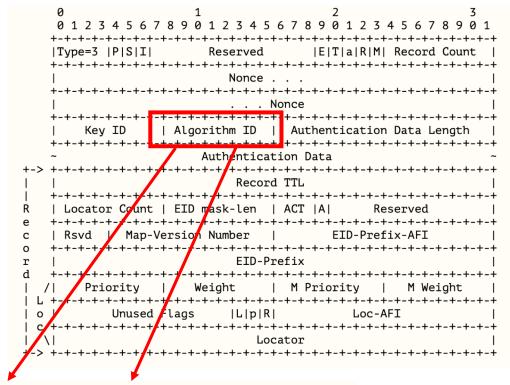
Update on 6830bis/6833bis documents

Albert Cabellos (acabello@ac.upc.edu)


IETF 105 – Montreal July 2019

Since IETF - 104

- Posted draft-ietf-lisp-rfc6830bis-27 (June 2019)
- Posted draft-ietf-lisp-rfc6833bis-25 (June 2019)
- Outline of the changes:
 - 1. Security
 - 2. Rate-Limiting, Loss Detection and Retransmission
 - 3. MTU
 - 4. Other
 - Many minor editorial/clarification (not discussed in this presentation)

 Gleaning, Map-Versioning, LSB and Echo-Nonce <u>SHOULD NOT be</u> <u>used over the public Internet</u> and SHOULD only be used in trusted and closed environments. LSB SHOULD be coupled with Map-Versioning.

 The Map-Register message is authenticated with a <u>key</u> <u>derived from the pre-</u> <u>shared secret</u>, this prevents using long-lived keys.

Name	Number	MA(C	KDF	
None	0	Nor	 ne	None	
HMAC-SHA-1-96-None	1	[RFC2	2404]	None	
HMAC-SHA-256-128-None		_	2	[RFC4868] None
HMAC-SHA256-128+HKDF-S	SHA2562	3 [RFC486	8] [RFC4868]	_

Algorithm used to derive the pre-shared key

- 1. The KDF algorithm is identified by the field 'Algorithm ID'
- 2. The MAC algorithm is identified by the field 'Algorithm ID'
- 3. The pre-shared secret used to derive the per-message key is represented by PSK[Key ID]
- 4. The derived per-message key is computed as: per-msg-key=KDF(nonce+s+PSK[Key ID]). 's' is a string equal to "Map-Register Authentication".
- 5. The MAC output is computed using the MAC algorithm and the per-msg-key over the entire Map-Register

- In Map-Register the nonce is used to prevent anti-replay attacks. The nonce is incremented each successful Map-Register and indexed by <xTR-ID, key>
- Specified that they key used to authenticate Map-Register messages is unique per ETR.
- Rewritten Security Considerations according to the changes.

- Following the guidelines of RFC8085 we define these rate-limiters:
 - Map-Requests MUST be rate-limited to 1 per second per EIDprefix. After 10 retransmits without receiving the corresponding Map-Reply must wait 30 seconds.
 - Map-Reply MUST be rate-limited, it is RECOMMENDED that a Map-Reply for the same destination RLOC be sent no more than one packets per 3 seconds.
 - [This also applies to the SMR sender and responder]
 - After sending a Map-Register, if a Map-Notify is not received after 1 second the transmitter MUST re-transmit the original Map-Register with an exponential backoff, the maximum backoff is 1 minute.

MTU (6830bis)

- Following the guidelines of RFC8085:
 - LISP is expected to be deployed by cooperating entities communicating over underlays. Deployers are expected to set the MTU according to the specific deployment
 - For deployments not aware of the underlay restrictions on path MTU, the message size **MUST be limited to 576 bytes for IPv4** or **1280 bytes for IPv6** as outlined in RFC8085.

Other (6830bis and 6833bis)

- Instance-ID is defined as a 24-bit field in the dataplane.
- Clarified that the nonce (in Map-Request/Map-Reply) is used only to identify the corresponding Map-Request.
- Clarified that 'Explicit Congestion Notification' (ECN) field is processed as specified in [RFC6040].
- Clarified that while the mapping is being retrieved, an ITR/PITR can either drop or buffer the packet, no recommendation provided. This is up to the deployer.

Current IESG Evaluation Record

Discuss

Benjamin Kaduk Mirja Kühlewind (Eric Rescorla) **Discuss**

Benjamin Kaduk Mirja Kühlewind (Eric Rescorla)

draft-ietf-lisp-rfc6830bis-27

draft-ietf-lisp-rfc6833bis-25