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Overview

➢ Removed distributed flooding reduction, and related

➢ Updated Algorithm for flooding topology (FT) computation 
to consider:

❖ Degree (D for short): 

Degree of FT is the maximum degree among the degrees of 
the nodes on FT. The degree of a node on FT is the number 
of connections on FT it has to other nodes.
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Basic Idea of FTC Algorithm

• Select a node R0 with the smallest node ID;

• Build a tree using R0 as root breadth first;

• Connect node whose D is one to another   
(have FT: every node connects 2 or more 
nodes).
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FT Examples by Algorithm 
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FT Computation Details: build tree breadth first 

Cq = {(R0,D=0,PH={ })}, FT={ },  MaxD = 3.

0.    Cq = { }, // remove the first element containing R0 from Cq

FT= { (R0,D=0,PHs={ }) }; // add the element into FT

Cq = { (R1,D=0,PHs={R0}), (R2,D=0,PHs={R0}), // add Ri connected to R0 into Cq

(R3,D=0,PHs={R0}), (R4,D=0,PHs={R0}) } 

1. // remove the first element (R1,D=0,PHs={R0}) from Cq, R0’s D < MaxD

Cq = { (R2,0,{R0}), (R3,0,{R0}), (R4,0,{R0}) }, 

// add (R1,0,{R0}) into FT, increase R0’s D and R1’s D by one

FT = { (R0,1, { }), (R1,1, {R0}) }; // Ri -- R1 in Cq, not on FT, add R1 to Ri’s PHs

Cq = { (R2,0, {R0,R1}), (R3,0, {R0,R1}), (R4,0,{R0,R1}) }. 

2. // remove the first element (R2,0, {R0,R1}) from Cq, R0’s D < MaxD

Cq = { (R3,0, {R0,R1}), (R4,0,{R0,R1}) },

// add (R2,0,{R0}) into FT, increase R0’s D and R2’s D by one

FT = { (R0,2, { }), (R1,1, {R0}), (R2,1, {R0}) };//Ri -- R2 in Cq, not on FT, add R2 to Ri’s PHs

Cq = { (R3,0, {R0,R1,R2}), (R4,0,{R0,R1,R2}) }.

3. // remove the first element (R3,0, {R0,R1,R2}) from Cq, R0’s D < MaxD

Cq = { (R4,0,{R0,R1,R2}) },

// add (R3,0,R0) into FT, increase R0’s D and R3’s D by one

FT = { (R0,3, 0), (R1,1, R0), (R2,1, R0), (R3,1, R0) }.//Ri – R3 in Cq, add R3 to Ri’s PHs

Cq = { (R4,0,{R0,R1,R2,R3}) }.

4. // remove the first element (R4,0, {R0,R1,R2,R3}) from Cq, R1’s D < MaxD

Cq = {  },

// add (R4,0,R1) into FT, increase R1’s D and R4’s D by one

FT = { (R0,3, 0), (R1,2, R0), (R2,1, R0), (R3,1, R0), (R4,1,R1) }.

Cq = {  }.
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FT Computation Details: connect node whose D=1

5. Cq = {  },

// Get the first node R2 whose D=1

FT = { (R0,3, { }), (R1,2, {R0}), (R2,1, {R0}), (R3,1, {R0}), (R4,1, {R1}) }.

// Add link R2-R3 to FT, 

// where R2-R3 is not on FT and R3’s D=1 is minimum and R3’s ID is minimum

// increase R2’s D and R3’s D by one

FT = { (R0,3, { }), (R1,2, {R0}), (R2,2, {R0}), (R3,2, {R0, R2}), (R4,1,{R1}) }.

Cq = {  }.

6. Cq = {  },

// Get the first node R4 whose D=1

FT = { (R0,3, { }), (R1,2, {R0}), (R2,2, {R0}), (R3,2, {R0, R2}), (R4,1,R1) }.

// Add link R4-R2 to FT, 

// where R4-R2 is not on FT and R2’s D=2 is minimum and R2’s ID is minimum

// increase R2’s D and R4’s D by one

FT = { (R0,3, { }), (R1,2, {R0}), (R2,3, {R0}), (R3,2, {R0, R2}), (R4,2, {R1, R2}) }.

Cq = {  }.

FT = { (R0,3, 0), (R1,2, {R0}), (R2,3, {R0}), (R3,2, {R0,R2}), (R4,2,{R1,R2}) }.
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Algorithm in Details (1)

Algorithm starts from node R0 as root with 
• a given maximum degree MaxD, 
• a candidate queue Cq = {(R0, D = 0, PHs = { })}, 
• an empty flooding topology FT = { }. 

Cq contains one element (R0, D = 0, PHs = { }), 
where 
• node R0 is the root, 
• D = 0 indicates Degree of R0 is 0 (i.e., the number 

of links on FT connected to R0 is 0), 
• PHs = { } indicates that the Previous Hops (PHs for 

short) of R0 is empty.
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Algorithm in Details (2)
Algorithm starts from R0,  MaxD = 3,  Cq = {(R0, D = 0, PHs = { })},  and  FT = { }.

Step 3

Start

Step 4

For each node B in FT whose D is 

one, find a link L attached to B such 

that L’s remote node R whose D and 

ID are minimum; add L to FT (i.e., 

add R into B’s PHs), increase B’s D 

and R’s D by one.

Return FT.

No

Step 2Yes Are all nodes on 

FT? 

End

Step 1

Find and remove the first element with node A in Cq that is not on FT and one PH’s D in PHs  < MaxD. 

If there is no element with a node in Cq whose PHs != { } and one PH in PHs whose D < MaxD

then MaxD++, restarts algorithm from R0, MaxD, Cq = {R0,D=0,PHs = { }}, FT = { }; 

otherwise (i.e, A with one PH’s D in PHs < MaxD or PHs = { })

If PHs = { } (i.e., A is the root), then add A with D=0 and  PHs={ } into FT; 

otherwise (i.e., A is not the root. Assume that PH is the first one in PHs such that PH’s D < MaxD),   

PH’s D++,  add A with D=1 and PHs={PH} to FT.

Suppose that node Xi (i = 1, 2, …, n) is connected to 

node A and not on FT, and X1, X2, …, Xn are in an 

increasing order by their IDs (i.e., X1’s ID < X2’s ID 

< … < Xn’s ID).

If Xi is not in Cq, then add it into the end of Cq with 

D = 0, and PHs = {A}; 

otherwise (i.e., Xi is in Cq), add A into the end of 

Xi’s PHs 
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Next Step

Welcome comments

Request for adoption



Algorithm Considering Degree and Others (3)
Algorithm starts from R0,  MaxD = 3,  Cq = {(R0, D = 0, PHs = { })},  and  FT = { }.

Some nodes such as leaves in spine-leaf network have constraints on their degrees of 2 (i.e., each of leaf node has a 

degree of 2 at maximum, which is represented as ConMaxD.

Step 3

Start

Step 4

For each node B in FT whose D is 

one, find a link L attached to B such 

that L’s remote node R whose D and 

ID are minimum; add L to FT (i.e., 

add R into B’s PHs), increase B’s D 

and R’s D by one.

Return FT.

No

Step 2Yes Are all nodes on 

FT? 

End

Step 1

Find and remove first element with node A in Cq not on FT and one PH’s D in PHs < MaxD and < its ConMaxD. 

If there is no element with a node in Cq whose PHs != { } and one PH’D in PHs < MaxD and < its ConMaxD

then MaxD++, restarts algorithm from R0, MaxD, Cq = {R0,D=0,PHs = { }}, FT = { }; 

otherwise (i.e, A with one PH’s D in PHs < MaxD and < its ConMaxD or PHs = { })

If PHs = { } (i.e., A is the root), then add A with D=0 and  PHs={ } into FT; 

otherwise (i.e., A is not root. Assume PH is first one in PHs such that PH’s D < MaxD and < its ConMaxD),   

PH’s D++,  add A with D=1 and PHs={PH} to FT.

Suppose that node Xi (i = 1, 2, …, n) is connected to 

node A and not on FT, and X1, X2, …, Xn are in an 

increasing order by their IDs (i.e., X1’s ID < X2’s ID 

< … < Xn’s ID).

If Xi is not in Cq, then add it into the end of Cq with 

D = 0, and PHs = {A}; 

otherwise (i.e., Xi is in Cq), add A into the end of 

Xi’s PHs


