
FT Computation (FTC) Algorithm

draft-cc-lsr-flooding-reduction-04

Huaimo Chen (huaimo.chen@futurewei.com)

Dean Cheng (deanccheng@gmail.com)

Mehmet Toy (mehmet.toy@verizon.com)

Yi Yang (yyietf@gmail.com)

Aijun Wang (wangaj.bri@chinatelecom.cn)

Xufeng Liu (xufeng.liu.ietf@gmail.com)

Yanhe Fan (yfan@casa-systems.com)

Lei Liu (liulei.kddi@gmail.com)

Overview

➢ Removed distributed flooding reduction, and related

➢ Updated Algorithm for flooding topology (FT) computation
to consider:

❖ Degree (D for short):

Degree of FT is the maximum degree among the degrees of
the nodes on FT. The degree of a node on FT is the number
of connections on FT it has to other nodes.

1

R0
R3

R5

R6

R2

R8

R4 R7

R1

R9

Link on FT

R0’s

D=3

R1’s

D=2
R9’s

D=2

R6’s

D=2

FT’s

D=3

Basic Idea of FTC Algorithm

• Select a node R0 with the smallest node ID;

• Build a tree using R0 as root breadth first;

• Connect node whose D is one to another
(have FT: every node connects 2 or more
nodes).

2

Consider

Degree

Consider

Degree

R0
R3

R5

R6

R2

R8

R4 R7

R1

R9
R0

R3

R5

R6

R2

R8

R4 R7

R1

R9

FT Examples by Algorithm

3

R0
R3

R5

R6

R2

R8

R4 R7

R1

R9

R0
R3

R5

R6

R2

R8

R4 R7

R1

R9

Link on FT

FT’s

D=3

Minimum D = 2

Tolerant to any 1 link failure

R0

R1

R2

R3
R4

R5

R6

R7

R0

R1

R2

R3
R4

R5

R6

R7

R0

R1

R2 R3

R4

R0

R1

R2 R3

R4

FT Computation Details: build tree breadth first

Cq = {(R0,D=0,PH={ })}, FT={ }, MaxD = 3.

0. Cq = { }, // remove the first element containing R0 from Cq

FT= { (R0,D=0,PHs={ }) }; // add the element into FT

Cq = { (R1,D=0,PHs={R0}), (R2,D=0,PHs={R0}), // add Ri connected to R0 into Cq

(R3,D=0,PHs={R0}), (R4,D=0,PHs={R0}) }

1. // remove the first element (R1,D=0,PHs={R0}) from Cq, R0’s D < MaxD

Cq = { (R2,0,{R0}), (R3,0,{R0}), (R4,0,{R0}) },

// add (R1,0,{R0}) into FT, increase R0’s D and R1’s D by one

FT = { (R0,1, { }), (R1,1, {R0}) }; // Ri -- R1 in Cq, not on FT, add R1 to Ri’s PHs

Cq = { (R2,0, {R0,R1}), (R3,0, {R0,R1}), (R4,0,{R0,R1}) }.

2. // remove the first element (R2,0, {R0,R1}) from Cq, R0’s D < MaxD

Cq = { (R3,0, {R0,R1}), (R4,0,{R0,R1}) },

// add (R2,0,{R0}) into FT, increase R0’s D and R2’s D by one

FT = { (R0,2, { }), (R1,1, {R0}), (R2,1, {R0}) };//Ri -- R2 in Cq, not on FT, add R2 to Ri’s PHs

Cq = { (R3,0, {R0,R1,R2}), (R4,0,{R0,R1,R2}) }.

3. // remove the first element (R3,0, {R0,R1,R2}) from Cq, R0’s D < MaxD

Cq = { (R4,0,{R0,R1,R2}) },

// add (R3,0,R0) into FT, increase R0’s D and R3’s D by one

FT = { (R0,3, 0), (R1,1, R0), (R2,1, R0), (R3,1, R0) }.//Ri – R3 in Cq, add R3 to Ri’s PHs

Cq = { (R4,0,{R0,R1,R2,R3}) }.

4. // remove the first element (R4,0, {R0,R1,R2,R3}) from Cq, R1’s D < MaxD

Cq = { },

// add (R4,0,R1) into FT, increase R1’s D and R4’s D by one

FT = { (R0,3, 0), (R1,2, R0), (R2,1, R0), (R3,1, R0), (R4,1,R1) }.

Cq = { }.

Link on FT
R0

R1

R2 R3

R4

R0

R1

R2 R3

R4

R0

R1

R2 R3

R4

R0

R1

R2 R3

R4

4

FT Computation Details: connect node whose D=1

5. Cq = { },

// Get the first node R2 whose D=1

FT = { (R0,3, { }), (R1,2, {R0}), (R2,1, {R0}), (R3,1, {R0}), (R4,1, {R1}) }.

// Add link R2-R3 to FT,

// where R2-R3 is not on FT and R3’s D=1 is minimum and R3’s ID is minimum

// increase R2’s D and R3’s D by one

FT = { (R0,3, { }), (R1,2, {R0}), (R2,2, {R0}), (R3,2, {R0, R2}), (R4,1,{R1}) }.

Cq = { }.

6. Cq = { },

// Get the first node R4 whose D=1

FT = { (R0,3, { }), (R1,2, {R0}), (R2,2, {R0}), (R3,2, {R0, R2}), (R4,1,R1) }.

// Add link R4-R2 to FT,

// where R4-R2 is not on FT and R2’s D=2 is minimum and R2’s ID is minimum

// increase R2’s D and R4’s D by one

FT = { (R0,3, { }), (R1,2, {R0}), (R2,3, {R0}), (R3,2, {R0, R2}), (R4,2, {R1, R2}) }.

Cq = { }.

FT = { (R0,3, 0), (R1,2, {R0}), (R2,3, {R0}), (R3,2, {R0,R2}), (R4,2,{R1,R2}) }.

Link on FT
R0

R1

R2 R3

R4

R0

R1

R2 R3

R4

5

Algorithm in Details (1)

Algorithm starts from node R0 as root with
• a given maximum degree MaxD,
• a candidate queue Cq = {(R0, D = 0, PHs = { })},
• an empty flooding topology FT = { }.

Cq contains one element (R0, D = 0, PHs = { }),
where
• node R0 is the root,
• D = 0 indicates Degree of R0 is 0 (i.e., the number

of links on FT connected to R0 is 0),
• PHs = { } indicates that the Previous Hops (PHs for

short) of R0 is empty.

6

Algorithm in Details (2)
Algorithm starts from R0, MaxD = 3, Cq = {(R0, D = 0, PHs = { })}, and FT = { }.

Step 3

Start

Step 4

For each node B in FT whose D is

one, find a link L attached to B such

that L’s remote node R whose D and

ID are minimum; add L to FT (i.e.,

add R into B’s PHs), increase B’s D

and R’s D by one.

Return FT.

No

Step 2Yes Are all nodes on

FT?

End

Step 1

Find and remove the first element with node A in Cq that is not on FT and one PH’s D in PHs < MaxD.

If there is no element with a node in Cq whose PHs != { } and one PH in PHs whose D < MaxD

then MaxD++, restarts algorithm from R0, MaxD, Cq = {R0,D=0,PHs = { }}, FT = { };

otherwise (i.e, A with one PH’s D in PHs < MaxD or PHs = { })

If PHs = { } (i.e., A is the root), then add A with D=0 and PHs={ } into FT;

otherwise (i.e., A is not the root. Assume that PH is the first one in PHs such that PH’s D < MaxD),

PH’s D++, add A with D=1 and PHs={PH} to FT.

Suppose that node Xi (i = 1, 2, …, n) is connected to

node A and not on FT, and X1, X2, …, Xn are in an

increasing order by their IDs (i.e., X1’s ID < X2’s ID

< … < Xn’s ID).

If Xi is not in Cq, then add it into the end of Cq with

D = 0, and PHs = {A};

otherwise (i.e., Xi is in Cq), add A into the end of

Xi’s PHs

7

Next Step

Welcome comments

Request for adoption

Algorithm Considering Degree and Others (3)
Algorithm starts from R0, MaxD = 3, Cq = {(R0, D = 0, PHs = { })}, and FT = { }.

Some nodes such as leaves in spine-leaf network have constraints on their degrees of 2 (i.e., each of leaf node has a

degree of 2 at maximum, which is represented as ConMaxD.

Step 3

Start

Step 4

For each node B in FT whose D is

one, find a link L attached to B such

that L’s remote node R whose D and

ID are minimum; add L to FT (i.e.,

add R into B’s PHs), increase B’s D

and R’s D by one.

Return FT.

No

Step 2Yes Are all nodes on

FT?

End

Step 1

Find and remove first element with node A in Cq not on FT and one PH’s D in PHs < MaxD and < its ConMaxD.

If there is no element with a node in Cq whose PHs != { } and one PH’D in PHs < MaxD and < its ConMaxD

then MaxD++, restarts algorithm from R0, MaxD, Cq = {R0,D=0,PHs = { }}, FT = { };

otherwise (i.e, A with one PH’s D in PHs < MaxD and < its ConMaxD or PHs = { })

If PHs = { } (i.e., A is the root), then add A with D=0 and PHs={ } into FT;

otherwise (i.e., A is not root. Assume PH is first one in PHs such that PH’s D < MaxD and < its ConMaxD),

PH’s D++, add A with D=1 and PHs={PH} to FT.

Suppose that node Xi (i = 1, 2, …, n) is connected to

node A and not on FT, and X1, X2, …, Xn are in an

increasing order by their IDs (i.e., X1’s ID < X2’s ID

< … < Xn’s ID).

If Xi is not in Cq, then add it into the end of Cq with

D = 0, and PHs = {A};

otherwise (i.e., Xi is in Cq), add A into the end of

Xi’s PHs

