ALTA

Asymmetric Loss-Tolerant Authentication

Kyle Rose <krose@krose.org>
Jake Holland <jakeholland.net@gmail.com>
Akamai Technologies
Problem

Authenticating datagrams

- Payloads have a deadline
- Many receivers
- Datagrams are lossy
- Rexmits not appropriate
Signature Per Packet

Pros
- Can verify all received packets

Cons
- CPU intensive w/o dedicated HW
Release symmetric k1 after all packets using k1 have been delivered

Pros
- Symmetric auth is cheap

Cons
- Requires some weak clock sync (still some delay attacks)
- All bets are off once key is released
Signed Manifest

Pros
- Lots of fast hashes
- Small number of slow signatures

Cons
- What if you lose the manifest?
- Fate of data disconnected from authentication info
Chained Integrity

Pros
● Sparse signatures
● Tolerance for signature loss
● Fate of data connected to auth info

Cons
● Every loss breaks the chain
Redundant Integrity

Pros
● Two chances to get a packet hash

Cons
● Loss rate $p \rightarrow$ lose a subsequence with probability p^2
● Maybe more often if loss is bursty!
Golle and Modadugu (2001)

A DAG of hashes, with periodic signatures

Pros
- Also two chances to get each packet hash, but better distributed

Cons
- Complicated construction (moreso even than the diagram)
- Variable number of hashes per packet (up to 5)
Key Properties

- Optimal resistance to bursty packet loss
- Tolerance for signature loss
Next Steps

● Running code
 ○ Will be made public soon!
● Making design choices: opacity vs. overhead
● Fleshing out the draft
 ○ https://github.com/squarooticus/draft-alta
Questions?