ALTA

Asymmetric Loss-Tolerant Authentication

Kyle Rose krose@krose.org

Jake Holland <jakeholland.net@gmail.com> Akamai Technologies

Problem

Authenticating datagrams

- Payloads have a deadline
- Many receivers
- Datagrams are lossy
- Rexmits not appropriate

Signature Per Packet

Pros

Can verify all received packets

Cons

CPU intensive w/o dedicated HW

TESLA

Release symmetric k1 after all packets using k1 have been delivered

Pros

Symmetric auth is cheap

- Requires some weak clock sync (still some delay attacks)
- All bets are off once key is released

Signed Manifest

Pros

- Lots of fast hashes
- Small number of slow signatures

- What if you lose the manifest?
- Fate of data disconnected from authentication info

Chained Integrity

•

Pros

- Sparse signatures
- Tolerance for signature loss
- Fate of data connected to auth info

Cons

Every loss breaks the chain

Redundant Integrity

•

Pros

Two chances to get a packet hash

- Loss rate p → lose a subsequence with probability p²
- Maybe more often if loss is bursty!

Golle and Modadugu (2001)

A DAG of hashes, with periodic signatures

Pros

 Also two chances to get each packet hash, but better distributed

- Complicated construction (moreso even than the diagram)
- Variable number of hashes per packet (up to 5)

Key Properties

- Optimal resistance to bursty packet loss
- Tolerance for signature loss

Next Steps

- Running code
 - Will be made public soon!
- Making design choices: opacity vs. overhead
- Fleshing out the draft
 - https://github.com/squarooticus/draft-alta

Questions?