
draft-ietf-mls-protocol
IETF 105

Changes in -06
and -07

2

draft-06 - Bugfixes & Interim Feedback
● GroupState -> GroupContext, UserInitKey -> ClientInitKey
● Fixes to the key schedule and common framing introduced in draft-05
● Reorder blanking and update in the Remove operation

3

draft-07 - Optimizations
● Expand transcript to cover more of the handshake
● Enable new joiners to decrypt the Add
● Tree-based application key derivation
● Consumption rules
● Init message

4

Application Secret Tree (new epoch)

5

Message from E

6

Consuming Secrets
A secret S is consumed if:

● It is used to decrypt a message
● A secret derived from S has been consumed

7

Next couple of targets
draft-08 for interim in September 2019

● Incorporate feedback from this meeting
● Hopefully start getting implementations aligned

draft-09 for IETF 106 in November 2019

Approaching WGLC toward end of year?

8

Laziness
9

Problems
Group secret only needs to be updated if there’s messaging

Current operations update group secret on every change to the group, whether or
not there’s any messaging happening

All operations need to be originated by a member of the group; a third party can’t
initiate an add or remove

10

Recombination

11

Recombination

12

[[Illustration]]

13

Protocol Impact
Split the secret-update part of the current operations into a new Ratchet operation

If any Add/Update/Remove have been sent, then a sender MUST send a Ratchet
before sending an application message

14

Trade-Offs
On the one hand:

● Add / Update / Remove are constant time
● Ratchet is more expensive, due to blanking (see later presentation, though)
● Add* / Update / Remove can be sent by any authorized party

On the other hand:

● Risk of bugs in Ratchet timing

15

Server Add
16

Server-Initiated Add
In lazy framing, the server can synthesize an Add, but not a Welcome

… because it doesn’t have the init secret

Bring back GroupAdd: Asymmetric ratchet on add instead of KDF

● Group publishes a public key whose private key is held by members
● Welcome has public key instead of init secret
● New epoch secret formed via DH between group and user key pairs

17

Asymmetric Init Secret

18

Protocol Impact
struct {
 ProtocolVersion version;
 opaque group_id<0..255>;
 uint32 epoch;
 optional<RatchetNode> tree<1..2^32-1>;
 opaque interim_transcript_hash<0..255>;
 HPKEPublicKey init_pub;
 optional<KeyAndNonce> add_key_nonce;
} WelcomeInfo;

19

Trade-Offs
On the one hand:

● Unified logic for user- or group-initiated Add
● Any authorized party can synthesize a Welcome
● No more passing around secrets

On the other hand:

● Possibly complicated authorization story
● Locks us into DH-like constructions (?)

20

Which HPKE?
21

Encrypting to sibling

E(pkR=Right, psk=None, pkI=None, info=None; path_secret_[Parent])

22

More binding?

E(pkR=Right, psk=something, pkI=Left, info=something; path_secret_[Parent])

23

Trade-Offs
On the one hand:

● Ciphertexts are bound to a specific group, epoch, and tree position
● Populating PSK or info inputs is has no crypto cost

On the other hand:

● PSK is yet another group secret to derive
● Asymmetric authentication requires an extra DH operation…
● … and constrains us to use DH / AuthKEM constructions

24

Non-Destructive
Add

25

Recall: Add = Emplace + Blank dirpath

26

Don’t blank, add leaf keys

27

Suppose you’ve got a full subtree...

28

Remove C, E, F, L => 6 heads

29

Update A => 1 head

30

Add @ C (destructive) => 7 heads

31

Add @ C (non-destructive) => 2 heads

32

Protocol Impact
Update algorithms to track “unmerged leaves”

Update resolution algorithm to encrypt to
unmerged leaves as well as intermediate nodes

struct {
 HPKEPublicKey public_key;
 optional<Credential> credential;
 uint32 unmerged_leaves<0..2^16-1>;
} RatchetNode;

33

Trade-Offs
On the one hand:

● Less degradation in the tree due to Add => fewer public-key operations

On the other hand:

● More record-keeping and complexity

34

Tree Signing
35

The Lying Adder
When someone adds you to a group, they can lie about the content of the tree

Even if the leaves are correct, the intermediate keys might not meet the tree
invariant

36

Recall: Tree Hashes
Each node in the ratchet tree has an associated
hash, computed from its children and value

We use this to confirm agreement on the tree

37

Sign the Tree Hash
Whenever a member changes a node (e.g., with
an Update), they sign the node’s new hash

Thus, a node can only tamper with intermediate
nodes in its direct path

Full security impact is a little hard to characterize
succinctly

38

More Rigidity in the Tree

39

Containing the Lying Adder

40

Protocol Impact
Need to transmit these
signatures in Welcome /
Add / Update / Remove

32 -> 32 + 64 B/node

struct {
 HPKEPublicKey public_key;
 optional<Credential> credential;
 uint32 signer_id;
 opaque signature<0..2^16-1>;
} RatchetNode;

struct {
 HPKEPublicKey public_key;
 HPKECiphertext encrypted_path_secret<0..2^16-1>;
 uint32 signer_id;
 opaque signature<0..2^16-1>;
} DirectPathNode;

41

Trade-Offs
On the one hand:

● Some protection against adder providing bad tree information
● Adder can only lie about nodes in its direct path

On the other hand:

● ~3x increase in size of update

42

