
draft-ietf-netconf-crypto-types-10
draft-ietf-netconf-trust-anchors-05
draft-ietf-netconf-keystore-12
draft-ietf-netconf-tcp-client-server-02
draft-ietf-netconf-ssh-client-server-14
draft-ietf-netconf-tls-client-server-14
draft-ietf-netconf-netconf-client-server-14
draft-ietf-netconf-restconf-client-server-14
 +
draft-kwatsen-netconf-http-client-server-03

NETCONF WG  
IETF 105 (Montreal)

Status and Issues for the
“Client-Server” Suite of Drafts

Adopted

Not Yet Adopted

Since IETF 104
All drafts updated and submitted as a set multiple times!
High-level Updates:

crypto-Types:
- algorithms: identities --> enumerations
- lots of tweaks on key creation

trust-anchors:
- renamed to "truststore"
- Added "local-or-truststore" groupings

keystore:
- Added support fro symmetric-keys
- Now have RPCs (not actions) to return (potentially encrypted) key.

tcp-client-server:
- added a couple 'feature' statements

ssh-client-server:
- minor changes

tls-client-server:
- minor changes

http-client-server:
- major changes (but not adopted yet)

netconf-client-server:
- minor changes

restconf-client-server:
- major restructuring of the "server" module
- same restructuring SHOULD be applied the the "client" module, as well as both the NETCONF client & server modules.

- Added support for HTTP (w/o TLS) for when the TLS is terminated by an external system

!2

trying to Last Call ASAP

1. ietf-crypto-types

- algorithm identities strategy

2. ietf-keystore

- device-generated and hidden keys strategy

3. ietf-restconf-server

- overall structure strategy

This Presentation's Focus

Begin Discussion #1

Algorithm identities strategy.

!4

The current approach attempts to unify the algorithms produced by
disconnected Sec Area efforts.

• This is the Right Thing To Do(™), but is difficult...

The Chairs spoke with Sec Dir representative (Rifaat Shekh-
Yusef) last week, who plans to discuss with ADs this week.

While the authors wish to see this approach play out, we're
beginning to think about a fallback strategy... (slides coming up)

High-level Decision
Stay the course or Simplify?

Crypto Algorithm Identifiers: Identity vs. Enumerate

• Initially we use identity to
identify each security algorithm.

• Recently, some expert from
mailing list suggest that Enum
could be a better way.

• The benefit of Enum type over
identity are:
• Simple to manage
• When new algorithm is

designed, add a single value
in the IANA, RFCs from
different group can refer to
the value in their protocol
definition.

identity hash-algorithm {
 description "A base identity for hash algorithm verification.";
}

identity sha-224 {
 base "hash-algorithm";
 description "The SHA-224 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
}

 typedef hash-algorithm-t {
 type union {
 type uint16;
 type enumeration {
 enum NONE {
 value 0;
 description "Hash algorithm is NULL.";
 }
 enum sha1 {
 value 1;
 status obsolete;
 description "The SHA1 algorithm.";
 reference "RFC 3174: US Secure Hash Algorithms 1 (SHA1).";
 }
 }
}

Before:Background:

After:

https://tools.ietf.org/html/rfc6234

Unified Identifiers for Crypto Algorithms
In IETF, a number of working groups are working on security related RFCs, such as:

• tls, ipsecme, i2nsf, …
• Many RFCs have been published, many crypto algorithms have been defined and registered

to the IANA
• Different group and different RFC has their own style in defining crypto algorithm

• Efforts are required to define, review, implement and manage these algorithms

Open Question
• Should we come up a unified framework (i.e a unified list or IANA page) for crypto

algorithms identifier definition so that they can be shared among different groups and
RFCs?

• The Enum list of crypto algorithm in draft-ietf-crypto-types can be a start point
• Better methods are welcome

Assuming we stay the course:

• Assigning to IANA allows IANA to update the
modules outside of the standard RFC cycle.

- this is important.

• Breaking up into many modules enables each
to have better focus.

- unclear how important this may be.

We would continue using "draft-ietf-crypto-types".

One "ietf-" module --> many "iana-" modules

General Idea:

• Admit that TLS is the transport layer for most protocols

• Imagine a more TLS-aligned solution

• TLS protocol is heavily defined using ASN.1

• Already crypto-types defines many ASN.1 types

• So why not also add "OneAsymmetricKey" from RFC 5958

(Asymmetric Key Packages)?

 OneAsymmetricKey ::= SEQUENCE {
 version Version,
 privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
 privateKey PrivateKey,
 attributes [0] Attributes OPTIONAL,
 ...,
 [[2: publicKey [1] PublicKey OPTIONAL]],
 ...
 }

The Fallback Strategy

PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
 { PUBLIC-KEY, { PrivateKeyAlgorithms } }

 - privateKeyAlgorithm identifies the private-key algorithm and
 optionally contains parameters associated with the asymmetric key
 pair. The algorithm is identified by an object identifier (OID)
 and the format of the parameters depends on the OID, but the
 PrivateKeyAlgorithms information object set restricts the
 permissible OIDs. The value placed in privateKeyAlgorithmIdentifier
 is the value an originator would apply to indicate which algorithm
 is to be used with the private key.

 AlgorithmIdentifier{}, ALGORITHM, PUBLIC-KEY, CONTENT-ENCRYPTION
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

Notice "PrivateKeyAlgorithmIdentifier"

Is this a OneAsymmetricKey?

$ openssl ecparam -outform DER -out private_key.der -genkey -name prime256v1

$ openssl asn1parse -inform DER -in private_key.der

 0:d=0 hl=2 l= 119 cons: SEQUENCE
 2:d=1 hl=2 l= 1 prim: INTEGER :01
 5:d=1 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]
 39:d=1 hl=2 l= 10 cons: cont [0]
 41:d=2 hl=2 l= 8 prim: OBJECT :prime256v1
 51:d=1 hl=2 l= 68 cons: cont [1]
 53:d=2 hl=2 l= 66 prim: BIT STRING

Whatever OpenSSL is using, it would be most convenient to adopt.

What is an OpenSSL Private Key

Begin Discussion #2

Device-generated and hidden keys strategy.

!12

1. Enable manufacturers to ship devices with IDevID certificates

• implies that the associated private keys are hidden (e.g., TPM) (needed for SZTP)

2. Enable devices to generate keys

• without the key values ever being disclosed (best practice)

3. Enable clients to install subsequently "hidden" keys

• protected by a mechanism better than NACM

4. Support standard backup/restore interactions

• all but the manufacturer-generated hidden keys should be migratable

5. Don't have keys in <running> with values only in <operational>

• strange idioms should be avoided!

Goals

1. Action statements creating values in <operational>

1. Pros: follows general rule about actions and <operational>

2. Cons: copying "values" into <running> not easy

2. Encoded (crypt-hash like) values describing behavior

1. Pros: all values in <running>

2. Cons: encoding "verbs" into values bad

3. Disconnected RPCs (only return output, no datastore effect)

1. PROs: satisfies all use cases (it seems)

2. CONs: round-trip required to set generated key

Strategy #3 has traction, discussed next...

Several Strategies Tried

In ietf-crypto-types:

 grouping symmetric-key-grouping {
 leaf algorithm { ... }
 choice key-type {
 leaf key { type binary; ... }
 leaf hidden-key { type empty; ... }
 }

 grouping asymmetric-key-pair-grouping {
 leaf algorithm { ... }
 leaf public-key { ... }
 choice private-key-type {
 leaf private-key { type binary; ... }
 leaf hidden-private-key { type empty; ... }
 }

RPC-Based Approach
The secret part of key can be
reported as "hidden", in which
case the value is empty.

How keys come to be hidden is
outside scope, but primarily
conceived as being set during
manufacturing-time magic and/or
vendor-specific modules defining
proprietary RPCs.

The ability to report encrypted
keys is added by the ietf-keystore
module. (see next slide)

In ietf-keystore:

 grouping key-reference-type-grouping {
 choice key-type {
 leaf symmetric-key-ref { ... }
 leaf asymmetric-key-ref { ... }
 }
 }

 grouping encrypted-value-grouping {
 uses "key-reference-type-grouping";
 leaf value { type binary; }
 }

 grouping symmetric-key-grouping {
 uses ct:symmetric-key-grouping {
 augment "key-type" {
 container encrypted-key {
 uses encrypted-value-grouping;
 }
 }
 }
 }

 grouping asymmetric-key-pair-grouping {
 uses ct:asymmetric-key-pair-grouping {
 augment "private-key-type" {
 container encrypted-private-key {
 uses encrypted-value-grouping;
 }
 }
 }
 }

RPC-Based Approach (cont.)
 rpc generate-symmetric-key {
 input {
 leaf algorithm { ... }
 container encrypt-with {
 uses key-reference-type-grouping;
 }
 }
 output {
 uses ks:symmetric-key-grouping;
 }
 }

 rpc generate-asymmetric-key {
 input {
 leaf algorithm { ... }
 container encrypt-with {
 uses key-reference-type-grouping;
 }
 }
 output {
 uses ks:asymmetric-key-pair-grouping;
 }
 }

RPC-Based Approach (cont.)
 module: ietf-keystore
 +--rw keystore
 +--rw asymmetric-keys
 | +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw algorithm asymmetric-key-algorithm-t
 | +--rw public-key binary
 | +--rw (private-key-type)
 | | +--:(private-key)
 | | | +--rw private-key? binary // clear-text value
 | | +--:(hidden-private-key)
 | | | +--rw hidden-private-key? empty // no value
 | | +--:(encrypted-private-key)
 | | +--rw encrypted-private-key
 | | +--rw (key-type)
 | | | +--:(symmetric-key-ref)
 | | | | +--rw symmetric-key-ref? leafref // ref to another key in keystore
 | | | +--:(asymmetric-key-ref)
 | | | +--rw asymmetric-key-ref? leafref // ref to another key in keystore
 | | +--rw value? binary // cipher-text value
 | +--rw certificates ...
 | +---x generate-certificate-signing-request ...
 |
 +--rw symmetric-keys
 +--rw symmetric-key* [name]
 +--rw name string
 +--rw algorithm encryption-algorithm-t
 +--rw (key-type)
 +--:(key)
 | +--rw key? binary // clear-text value
 +--:(hidden-key)
 | +--rw hidden-key? empty // no value
 +--:(encrypted-key)
 +--rw encrypted-key
 +--rw (key-type)
 | +--:(symmetric-key-ref)
 | | +--rw symmetric-key-ref? leafref // ref to another key in keystore
 | +--:(asymmetric-key-ref)
 | +--rw asymmetric-key-ref? leafref // ref to another key in keystore
 +--rw value? binary // cipher-text value

Example
 <keystore>
 <asymmetric-keys>
 <asymmetric-key>
 <name>tpm-protected-key</name>
 <algorithm>rsa2048</algorithm>
 <public-key>base64encodedvalue==</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>builtin-idevid-cert</name>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>encrypted-key</name>
 <algorithm>secp256r1</algorithm>
 <public-key>base64encodedvalue==</public-key>
 <encrypted-private-key>
 <symmetric-key-ref>operators-encrypted-key</symmetric-key-ref>
 <value>base64encodedvalue==</value>
 </encrypted-private-key>
 </asymmetric-key>
 </asymmetric-keys>
 <symmetric-keys>
 <symmetric-key>
 <name>operators-encrypted-key</name>
 <algorithm>aes-256-cbc</algorithm>
 <encrypted-key>
 <asymmetric-key-ref>tpm-protected-key</asymmetric-key-ref>
 <value>base64encodedvalue==</value>
 </encrypted-key>
 </symmetric-key>
 </symmetric-keys>
 </keystore>

Special key shipped
with device. Used to
encrypt operator's key.

Special key used to
encrypt all other keys.
Installed by operator's

crypto officer.

Example general-use
key. Can be migrated to
other devices (i.e. RMA)

encrypted-by

1. Enable manufacturers to ship devices with IDevID certificates

• Key + certs in <operational> and, optionally, in <factory-default>

• Private key reported via "hidden" leaf with "empty" type.

2. Enable devices to generate keys

• RPCs defined to generate keys. (Client decides if key is encrypted or not)

3. Enable clients to install subsequently "hidden" keys

• Client can set (e.g., <edit-config>) an encrypted key. (actually, better than hidden)

4. Support standard backup/restore interactions

• All keys (except "hidden" keys) are reported.

• RMA procedure can migrate the "operator-wide" key used to encrypt other keys.

5. Don't have keys in <running> with values only in <operational>

• Check, all key values are "mandatory true". (see open Issue on next slide)

Satisfies Goals (Goals from earlier slide)

1. Report all key value's in <factory-default> and <running>?

(i.e., should the "algorithm" or "public-key" nodes be suppressed)

• PROs:

• The YANG model is best stating all fields are "mandatory true".

• There is no harm in reporting these nodes.

• CONs:

• The values only have to be reported in <operational> (so, it is unnecessary)

• Special case handling?

• Yes, but it's not an issue, and actually something that should be embraced.

1. Already the server must handle special the <hidden-key/> empty type

• i.e., don't actually delete the "algorithm" and "public-key" nodes

• So, handling "don't actually modify" said nodes is no more effort

2. Better would be to define an annotation that could generically identify
nodes that are effectively read-only.

• Such an annotation is needed in other use-cases (e.g., schema-mount)

Open Issues

2. RMA requires new special step - Okay?

• Assuming operators follow what would effectively become best-practice

• i.e., to create an "operator-wide" symmetric key, that is encrypted on

each device using the device's "hidden" key, and subsequently used
to encrypt all other keys.

• Then the RMA process would change:

• OLD

• load config from old device

• additional customizations (e.g., install node-locked licenses)

• NEW

• manually install encrypted "operator-wide" on new device

• edit config from old device to remove the old "operator-wide" key

• it's the same value, but just encrypted by a different key

• load modified config from old device

• additional customizations (e.g., install node-locked licenses)

Open Issues (cont.)

Begin Discussion #3

The ietf-restconf-server structure strategy.

!22

• In the TCP, SSH, TLS, and HTTP models...

• there is a grouping that represents the configuration for just a single connection.

• But this pattern is not followed in the NC and RC models

• instead, an uber "application-level" grouping is provided supporting:

• both standard and call-home use cases, with many endpoints for each!

Motivation: To follow the patten
(Set by the other client/server drafts)

Restructuring module: ietf-restconf-server
 +--rw restconf-server
 +---u restconf-server-app-grouping

 grouping restconf-server-grouping
 +-- client-identification
 +-- cert-maps
 +---u x509c2n:cert-to-name

 grouping restconf-server-listen-stack-grouping
 +-- (transport)
 +--:(http) {http-listen}?
 | +-- http
 | +-- external-endpoint
 | | +-- address inet:ip-address
 | | +-- port? inet:port-number
 | +-- tcp-server-parameters
 | | +---u tcps:tcp-server-grouping
 | +-- http-server-parameters
 | | +---u https:http-server-grouping
 | +-- restconf-server-parameters
 | +---u rcs:restconf-server-grouping
 +--:(https) {https-listen}?
 +-- https
 +-- tcp-server-parameters
 | +---u tcps:tcp-server-grouping
 +-- tls-server-parameters
 | +---u tlss:tls-server-grouping
 +-- http-server-parameters
 | +---u https:http-server-grouping
 +-- restconf-server-parameters
 +---u rcs:restconf-server-grouping

 grouping restconf-server-callhome-stack-grouping
 +-- (transport)
 +--:(https) {https-listen}?
 +-- https
 +-- tcp-client-parameters
 | +---u tcpc:tcp-client-grouping
 +-- tls-server-parameters
 | +---u tlss:tls-server-grouping
 +-- http-server-parameters
 | +---u https:http-server-grouping
 +-- restconf-server-parameters
 +---u rcs:restconf-server-grouping

 grouping restconf-server-app-grouping
 +-- listen! {https-listen}?
 | +-- endpoint* [name]
 | +-- name? string
 | +---u restconf-server-listen-stack-grouping
 +-- call-home! {https-call-home}?
 +-- restconf-client* [name]
 +-- name? string
 +-- endpoints
 | +-- endpoint* [name]
 | +-- name? string
 | +---u restconf-server-callhome-stack-grouping
 +-- connection-type ...
 +-- reconnect-strategy ...

 module: ietf-restconf-server
 +--rw restconf-server
 +---u restconf-server-grouping

 grouping restconf-server-grouping
 +-- listen! {https-listen}?
 | +-- endpoint* [name]
 | +-- name? string
 | +-- (transport)
 | +--:(https) {https-listen}?
 | +-- https
 | +-- tcp-server-parameters
 | | +---u restconf-server-grouping
 | +-- tls-server-parameters
 | | +---u restconf-server-grouping
 | +-- http-server-parameters
 | +---u restconf-server-grouping
 +-- call-home! {https-call-home}?
 +-- restconf-client* [name]
 +-- name? string
 +-- endpoints
 | +-- endpoint* [name]
 | +-- name? string
 | +-- (transport)
 | +--:(https) {https-call-home}?
 | +-- https
 | +-- tcp-client-parameters
 | | +---u restconf-server-grouping
 | +-- tls-server-parameters
 | | +---u restconf-server-grouping
 | +-- http-server-parameters
 | +---u restconf-server-grouping
 +-- connection-type
 | +-- (connection-type)
 | +--:(persistent-connection)
 | | +-- persistent!
 | +--:(periodic-connection)
 | +-- periodic!
 | +-- period? uint16
 | +-- anchor-time? yang:date-and-time
 | +-- idle-timeout? uint16
 +-- reconnect-strategy
 +-- start-with? enumeration
 +-- max-attempts? uint8

Before:

After:

no change per-connection grouping

listen
stack

grouping

call-home
stack grouping

app stack grouping

app stack container

app stack container

app stack grouping

no change

• Currently only applied to restconf-server...

Continue?

Client Server

NETCONF

RESTCONF

🙏 Thanks for the input! ☺

