NFSv4 Extension for Integrity Measurement

Chuck Lever

Today's Approach

- This presentation covers draft-ietf-nfsv4integrity-measurement-05
 - This document's Introduction is architectural and high level. Today I will complement that with a use case, an interoperability analysis, and operational examples.
- Then we will discuss remaining controversies

Purpose of Integrity Measurement

- Protect file content from creation to use
 - In particular: the content of executables
 - Protects data at-rest and data in-transit; the protection envelope is continuous
 - Thus data is protected during distribution, installation, execution, and archiving

Purpose of This Extension

- Enable transport and storage of IMA metadata for files stored on NFS servers. IMA metadata is transparent to the NFS protocol and the client and server implementations
- Enable installation of IMA-protected executables from NFS clients
- Extend protection from NFS server to end users on NFS clients
- Enable appraisal policy on an NFS client to be different than the server's or the policies on other clients

Global Pre-requisites

- A software vendor *V* generates a key pair *K*_{public} and *K*_{private}. *V* publishes *K*_{public} to its customers via a trust authority.
- *V* finalizes a Golden Master of its application *A*.
- V generates a checksum, C_A , of the contents of A's executable file, then signs it with $K_{private}$. Call this C_{signed} .
- *V* publishes *A* and *C*_{signed}.

Local Pre-requisites

- On systems where integrity measurement is used to protect users from corrupted file content, the following is required:
 - A trusted mechanism for storing multiple K_{public}
 - A privileged security module which measures and appraises files
 - A policy for handling appraisal failures

Operation on a Local FS

- A customer installs A in a file on a local filesystem. It stores C_{signed} as an extended attribute of that file.
- A privileged local security module *M*_{local} computes the checksum of *A*. Call this *C*'_{*A*}.
- Before A can be executed, M_{local} verifies C_{signed} with K_{public} and confirms that C_A matches C'_A. If either test fails, M_{local} may report the failure in an audit log or prohibit user access, depending on local policy.

Operation on a Remote FS *Current Scenario*

- A customer installs A in a file on a file server. It installs *C_{signed}* as an extended attribute of that file. The file access **does not** expose the extended attribute.
- A security module on the file server *M*_{server} computes the checksum of *A*. Call this *C*'_{*A*}.
- Before A can be accessed remotely, M_{server} verifies C_{signed} with K_{public} and confirms that C_A matches C'_A. If either test fails, M_{server} may report the failure in an audit log or prohibit remote access, depending on policy on the server.

Operation on a Remote FS *With NFS extension*

- A customer installs A in a file on a file server. It installs *C*_{signed} as an extended attribute of that file. The file access protocol **does** expose the extended attribute.
- A security module on the client, *M*_{client}, computes the checksum of *A*. Call this C'_A.
- Before A can be executed, M_{client} verifies C_{signed} with K_{public} and confirms that C_A matches C'_A. If either test fails, M_{client} may report the failure in an audit log or prohibit user access, depending on policy on the client.

Metadata Interoperability

- Interoperability is defined as the ability for NFS client A to recognize IMA metadata generated on NFS client B or on an NFS server
 - Local IMA appraisers have to continue to recognize metadata generated long ago (backwards compatibility)
 - Local IMA appraisers have to recognize metadata generated from different sources using different checksum and certificate formats (source compatibility)

Issues for Consensus

- Does the document Introduction focus on the right Linux IMA operational details and use cases?
- Are the IMA metadata interoperability concerns adequately covered?
- What is the proper level of permission needed for modifying the extended attribute via NFS?
- Is an error code needed for communicating integrity failure to NFS clients?

Next Steps

- Add a charter milestone including a delivery date target
- More working group review, especially assessing how well the document explains integrity measurement
- More prototype experience. Does the extension provide useful and effective security?
- WGLC

Possible Future Work

- Similar cryptographic protection for file attributes (EVM) would require:
 - NFS protocol support for SMACK access control and file capabilities, which are non-standard
 - Determining how to handle NFSv4 ACLs
 - Exposing FS UUID and list of protected attributes
- Good performance for mutable files