#### **IETF 105**

# **Update on**

# draft-irtf-nwcrg-network-coding-satellites-05

N. KUHN and E. LOCHIN





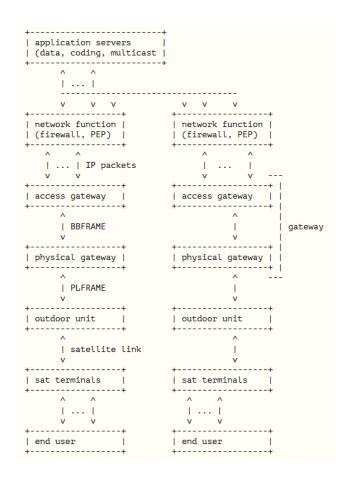
## From \*-04 to \*-05

- Since last IETF: WGLC process
- Comments from Lloyd Wood and John Border
- Rather than presenting a diff, this presentation presents \*-05



## **Abstract**

- Follows the taxonomy document [RFC8406]:
  - coding as a linear combination of packets
  - operates above the network layer
- Details a multi-gateway satellite system to identify use-cases where coding is relevant
  - Cope from residual losses
  - Provide reliable multicast services
  - ...
- Contribute to a larger deployment of coding techniques in SATCOM
- Identify open research issues
  - Interaction between congestion controls and coding techniques
  - •




## Introduction

- The notations used in this document are based on the taxonomy RFC8406
  - Channel and link codings are gathered in the PHY layer coding and are out of the scope of this document
  - FEC (also called Application-Level FEC) operate above the network layer
  - This document considers coding (or coding techniques or coding schemes) as a linear combination and not as a content coding (e.g., to compress a video flow)
- Active research activity on coding techniques and SATCOM
- Not much has actually made it to industrial developments
- This document aims at identifying opportunities for further usage of coding in these systems



# Note on satellite topology





# **Use-case: Two-way relay channel mode**

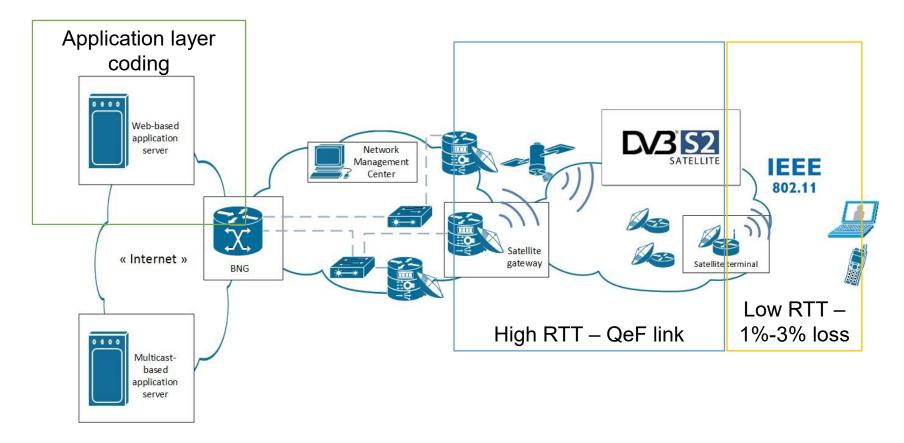
### **Demonstrated at ASMS2010**



## **Use-case: Reliable multicast**

Could be achieved by using other multicast or broadcast systems, (NORM [RFC5740] in situations where a feedback link is available, or FLUTE [RFC6726] otherwise.

Note that both NORM and FLUTE are limited to block coding, none of them supporting sliding window encoding schemes [RFC8406].




# **Use-case: Hybrid access**

- To cope with packet loss (due to either end-user mobility or physical-layer impairments), coding techniques could be introduced both at the CPE and at the concentrator.
- Better tolerance to out-of-order packets which occur when exploited links exhibit high asymetry in terms of RTT.

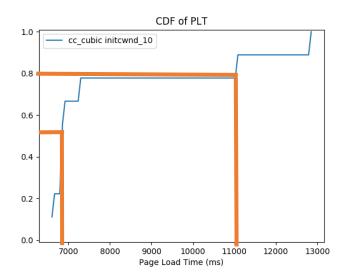


# **Use-case: Dealing with LAN losses**

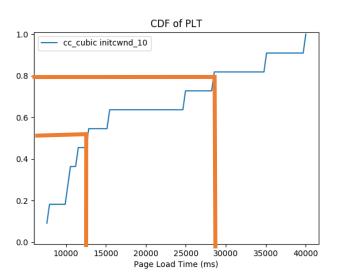




# **Use-case: Dealing with LAN losses**


PC

Satellite Gateway Satellite Terminal


PC

HTTP2/TCP transfer (2 MB)

PLT without congestion without losses



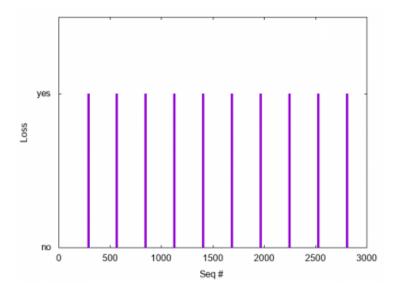
PLT without congestion with losses



1% losses induces

netem random loss On forward and return

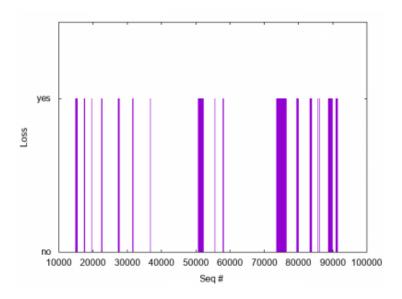
5 seconds increase (median)


18 seconds increase (80%)








- 3-meters antenna put on a train
- VL-SNR headers (DVB-S2X)
- C/N = 0 dB (QPSK2/9)

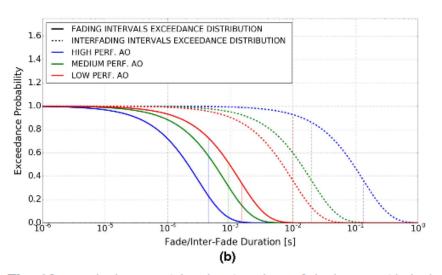


LMS channel








These results have been obtained with CNES SMILE project. The traces format has been adapted by Bastien Tauran (TéSA / ISAE-SUPAERO) with CNES R&T funding

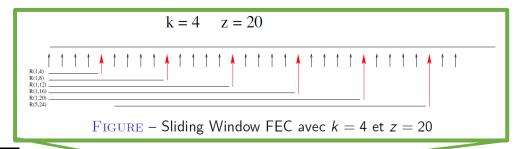






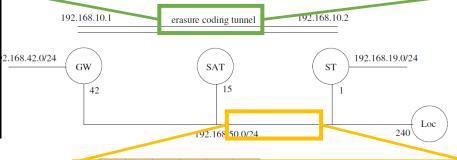
- Optical links with fading events
- GEO-to-ground downlink scenario

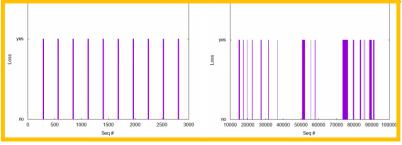



There are cases where physical layer robustness is limited

**Fig. 12.** Fade duration (plain lines) and interfade duration (dashed lines) analytic exceedance distributions for each AO performance level

Canuet, Lucien and Vedrenne, Nicolas and Conan, Jean-Marc and Petit, Cyril and Artaud, Géraldine and Rissons, Angélique and Lacan, Jérôme Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics. (2018) Journal of the Optical Society of America A, 1 (35). 148-162. ISSN1084-7529

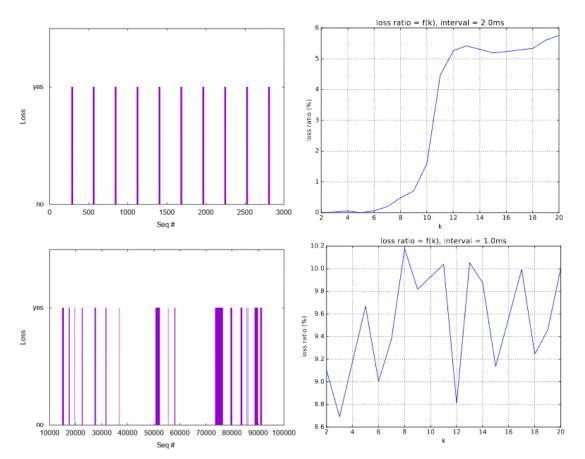



























# **Use-case: Improving the gateway handovers**

```
-{}- : bidirectional link
! : management interface
                   |Physical| |Access | |Network |
              +-{}-|gateway|-{}-|function|
|Satellite| |SAT|
                            | Control plane |
|Terminal |-{}-| |
                             manager
              +-{}-|Physical|-{}-|Access |-{}-|Network |
                   |qateway| |qateway| |function|
```



# Research challenge: coding and congestion control

# Coding and congestion control

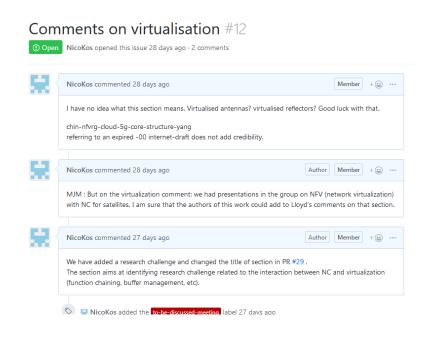
- PEP : could host coding techniques
- This leads to research question on the interaction between coding schemes and TCP congestion controls
  - E.g. impact of reordering level on the interest of using RACK

# Efficient usage of resource

 How much overhead from redundant reliability packets can be introduced to guarantee a better end-user QoE while optimizing capacity usage?

#### Virtualization

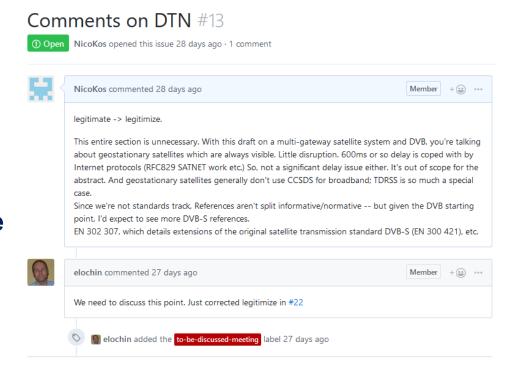
- optimization of the NFV service function chaining considering a virtualized infrastructure and other SATCOM specific functions
- guarantee an efficient radio usage and easy-to-deploy SATCOM services


#### DTN

Integration in the IETF DTN stack?



# **Open issues**


- Comments on virtualisation
- Research challenge
  - optimization of the NFV service function chaining considering a virtualized infrastructure and other SATCOM specific functions
  - guarantee an efficient radio usage and
  - easy-to-deploy SATCOM services.
  - virtualized SATCOM terminals: management of limited buffered equipment?
- Proposition to close the issue





# **Open issues**

- Comments on DTN
- Answer
  - The document uses DVB as a example on how to present SATCOM systems
  - No specific focus on GEO
- Proposition to close the issue





## From \*-05 to \*-06

Next steps: WGLC?