"Summary of last episode @ ietf 104"

Two approaches:

- an "Intra STREAM FEC" (draft-swett-nwcrg-coding-for-quic-02)
 - Idea: FEC protection within a single STREAM of a QUIC session
 - 😊 protect only the flows that need it within a QUIC session
 - 😊 absolutely no change to source QUIC packets
 - 😕 no notion of boundaries (it's a stream abstraction) making it incompatible with DATAGRAM FRAMES
 - 😕 a source symbol may straddle several QUIC packets, hence inefficiencies
"Summary of last episode @ ietf 104" (2)

• a "Cross packet FRAMES FEC" proposal (François M.)
 • Idea: FEC protection of all/a subset of the FRAMES of a QUIC packet
 😊 compatible with any FRAME type, including future DATAGRAM FRAMES
 😊 preserves packet boundaries
 😊 source symbols never straddle QUIC packets
 😕 a slight change of source packets (adding FPI signaling)
 😕 more difficult to protect a subset of a QUIC packet (signaling cost)
What we decided: "cross packet FRAMES"

- being FRAME agnostic and compatible with DATAGRAM FRAMES is a must
- we totally changed the approach
 - draft version -03 implements the "Cross packet FRAMES FEC" paradigm plus additional features
What we decided: "cross packet FRAMES" (2)

- many things didn't change
 - (non exhaustive list)
 - FEC encoding is applied **before** any QUIC encryption
 - middleboxes cannot interfere (no re-encoding)
 - define a **generic** framework to use FEC protection in QUIC -- this I-D
 - leave code specificities (e.g., block or sliding window code) in additional FEC Scheme I-Ds
 - use dedicated **RECOVERED** FRAMES to signal "**loss but recovery**" of a QUIC packet
 - do not interfere with congestion control but avoid retransmission
QUIC packet to source symbols mapping (1)

• requirements:

1. packets are of variable size, symbols are of fixed size (E), so **we need a mapping**

2. the **symbol size, E**, needs to be initialized wisely:
 - "small E" is fine when the QUIC packet sizes is largely variable (very small + a few very large packets), but has a cost
 - "large E" makes it simple (everything fits in a single symbol) but is suboptimal with a majority of small packets, and it may require to fragment the QUIC/UDP at IP level
 - E could be adjusted depending on the target use-case (if known)

3. anticipate the potential need to **avoid exceeding the PMTU** (we add extra FEC related signaling)
 - choose E small enough
QUIC packet to source symbols mapping (2)

Step 1: from QUIC packet payload to **chunks**
- packet payload data is of **variable** size but source symbols are **fixed** size (E bytes)
- use QUIC **zero padding FRAMES** before* the payload to align payload size
 * to avoid problems with STREAM frames that do not encode their length

(1) pad with initial padding FRAMES to align packet size

(2) segment padded payloads into E-1 byte long chunks
 (E-5 for the 1st one to leave room for additional info)
QUIC packet to source symbols mapping (3)

- **Step 2**: from a packet chunks to **source symbols**
 - **1st chunk**: prepend a long signaling (5 bytes)

<metadata + packet number + 1st chunk> constitute the source symbol
Step 2: from a packet chunks to **source symbols**

- 1st chunk: prepend a long signaling (5 bytes)
- following chunks: prepend a short header (1 byte)

<meta-data + chunk> constitute the source symbol
QUIC packet to source symbols mapping (5)

• **Step 2:** from a packet chunks to **source symbols**

 • meta-data (all chunks):
 o N: packet Number is there
 o S (start): first chunk of a QUIC packet
 o E (end): last chunk of a QUIC packet

 +----------+
 |Resvd (0)|N|S|E|
 +----------+

• Packet Number (4 bytes) (first chunk only, optional):
 o when "N" (Packet Number) field is 1 in the meta-data
 o required at a receiver to determine the QUIC packet number associated after decoding all the symbols of the lost packet
The big picture: from QUIC packet to source symbols (1)
The big picture: from QUIC packet to source symbols (2)

• add a **FEC_SRC_FPI frame** to the original QUIC packet, then send it
 o no other change to the original QUIC packet (no padding, no meta-data, we do not transmit source symbols per se)
 o the FEC_SRC_FPI frame is **ignored** by a QUIC receiver that does not support FEC

• transmit repair symbols in dedicated **REPAIR frames**
 o it includes repair FPI signaling information
 o one or more REPAIR frames can be packed in the same QUIC packet (e.g., if E is small WRT the PMTU), for reduced overhead
 o a REPAIR frame is **ignored** by a QUIC receiver that does not support FEC
Yes, we need this extra meta-data / packet number

decoding successful for those 4 source symbols

recv'd or decoded	+----------+ +----------+ +----------+ +----------+	recv'd or decoded										
or lost...	+----------+ +----------+ +----------+ +----------+	or lost...										
m	pn	chnk		m	chunk		m	chunk		m	chunk	

S=1: we know the chunk contains one or more padding FRAMES plus original FRAMES

N=1: we can also recover the corresponding QUIC Packet Number

E=1: we know this chunk is the last one of packet

we have all chunks \((S=1 \mid \text{middle} \mid \text{middle} \mid E=1)\) of the QUIC packet. Done 😊
Open points

• considering a subset of the QUIC packet frames
 • because protecting these FRAMES is not crucial
 o e.g., ACK FRAMES
 o e.g., FRAMES of non delay sensitive streams
 o ...
 • how to inform both ends?

• choice of E
 • we define general rules, but details is left to the developer/use-case/data flow features
To Be Done

• update our companion RLC for QUIC I-D…
 • https://datatracker.ietf.org/doc/draft-roca-nwcrg-rlc-fec-scheme-for-quic/

• finish the SWIF codec…

• … and continue tests