
rQUIC
Another QUIC + FEC approach

Mihail Zverev, Pablo Garrido,

Ramón Agüero, Özgü Alay, Josu Bilbao

What is rQUIC?

• FEC prevents retransmissions, enabling robust and low latency
communications.

• At the beginning of QUIC there was an unsuccessful intent to
implement FEC.

• Recently F. Michel et al. have developed and presented a QUIC + FEC
implementation.

• In parallel, there was another QUIC + FEC development, led by Pablo
Garrido, with a different approach, and different results.

rQUIC
https://github.com/pgOrtiz90/quic-go-fec

• Which QUIC + FEC is better and in which cases? Is it worth merging?

Presented at IFIP 2019

Presented at IFIP 2019

To be presented at
GLOBECOM 2019

https://github.com/pgOrtiz90/quic-go-fec

Coding after encryption?

https://tools.ietf.org/html/draft-swett-nwcrg-coding-for-quic-03#section-3.3

As stated in ‘Coding for QUIC’ document:

Work on rQUIC started as addition of FEC to QUIC in the most practical and efficient possible manner.
The focus was the resulting implementation. Therefore, no ID was consulted prior to this work.

Encoding after encryption was chosen for two main reasons:
1) Easier implementation
2) Easier scaling to QUIC-NC

NC = Network Coding

https://tools.ietf.org/html/draft-swett-nwcrg-coding-for-quic-03#section-3.3

Network Coding and encryption

QUIC connection QUIC connection QUIC connection

QUIC connection Encode Encrypt

QUIC connection Encrypt Encode

Encode Send Receive Send Receive

Encrypt Hack Recode

Send Receive encryption Send Receive

Decrypt (if you can) Recode

Recode Decrypt Send Receive

Encrypt Recode Decode

Send Receive Encrypt Decrypt

Decrypt Send Receive

Recode Hack

Encrypt encryption

Send Receive (if you can)

Decrypt Decrypt

Decode Recode

Encrypt

Send Receive

Decrypt

Decode

Implementation

• rQUIC is based on quic-go (https://github.com/lucas-clemente/quic-go). The base
code was taken after v0.7.0 release.

• Rather than testing all existing coding schemes, the work focused on
coding strategy implementation, only using XOR to code.

• In NC terms, generation sizes of n are protected by 1 coded packet.
Coding rate is adaptive.

• 4 bytes long FEC header is added with the following fields:
• Type: protected, unprotected and coded.

• BlockID: in NC terms, generation ID.

• Ratio: generation size.

• Count: packet order in FEC block (generation).

https://github.com/lucas-clemente/quic-go

Implementation overview

Red borders show new or modified QUIC blocks.

Adaptive coding rate

Adaptive coding rate reduces overhead in the absence of losses.

The algorithm is based on steering residual losses, which are packets that need to be retransmitted
due to FEC failing to recover.

𝜖𝑖 =
𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑜𝑖𝑛𝑠 − 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛𝑠

Given the period 𝑖 of length 𝑇,
the residual loss is computed as:

ҧ𝜖 =
1

𝑁
෍

𝑖=1

𝑁

𝜖𝑖

The residual losses are then
averaged over 𝑁 periods:

The algorithm:
if ҧ𝜖 < 𝛾 then

𝑟 = 𝑟 · 1 − 𝛿
else

𝑟 = 𝑟 · 1 + 𝛿
end if

𝛿 and 𝛾 can be seen as aggressiveness parameters of
the algorithm.

𝛿 and 𝛾 are configurable and determine the tolerance
to FEC recovery failure.

After analysis of the behavior under different network
topologies, we choose

𝑇 = 3 · 𝑅𝑇𝑇 𝛿 = 0.33 𝛾 = 1%

Evolution of rQUIC’s adaptive FEC ratio over time, for
different link loss rates with 0 (no loss), 1, 2, 3 and 5%.

Evaluation

Emulation
scenario

25 ms, 20 Mbps
(WiFi/LTE)

100 ms, 10 Mbps
(2G/3G)

400 ms, 1.5 Mbps
(Satellite)

Overhead Physical setup

Bulk
Transfer

(20 MB for
WiFi/LTE and
2G/3G, 5 MB
for satellite)

HTTP/2
transfer
(fickr.com)

(30 objects,
1.776 KiB)

SIMULATIONS PHYSICAL SETUP
(provided by Simula)rQUIC fairness check

QUIC session coexisting with (1) rQUIC session
and (2) another QUIC session (25ms, 20 Mbps).

rQUIC does not impair QUIC

Measured output:

Completion ratio
𝜉 =

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑟𝑄𝑈𝐼𝐶

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑄𝑈𝐼𝐶

Overhead
𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =

𝐹𝐸𝐶 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

Summary

• rQUIC is another modification of QUIC with FEC, different from the known
one (by F. Michel).

• Although tested with only 1 coding scheme, it significantly improves bulk
transfer traffic.

• Transparent design (to QUIC) which eases new coding schemes integration.

• With this implementation it is easier to give the next step:
QUIC with Network Coding.

• Upcoming features:
• More coding schemes (‘light-weightest’ first)
• Base code update (inclusion of new quic-go features)
• Current code improvements (such as adaptation in slow start phase and out of order

packets management)
• Multipath
• Network Coding

Thank you

Mihail Zverev mzverev@ikerlan.es
Pablo Garrido pgarrido@ikerlan.es
Ramón Agüero ramon@tlmat.unican.es
Özgü Alay ozgu@simula.no
Josu Bilbao jbilbao@ikerlan.es

mailto:mzverev@ikerlan.es
mailto:pgarrido@ikerlan.es
mailto:ramon@tlmat.unican.es
mailto:ozgu@simula.no
mailto:jbilbao@ikerlan.es

