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What is rQUIC?
aved 1kerlan Q

* FEC prevents retransmissions, enabling robust and low latency
communications.

* At the beginning of QUIC there was an unsuccessful intent to
implement FEC.

* Recently F. Michel et al. have developed and presented a QUIC + FEC
Imp|ementathn. Presented at IFIP 2019

* In parallel, there was another QUIC + FEC development, led by Pablo
Garrido, with a different approach, and different results.

Presented at IFIP 2019
r To be presented at
GLOBECOM 2019

https://github.com/pgOrtiz90/quic-go-fec

* Which QUIC + FEC is better and in which cases? Is it worth merging?



https://github.com/pgOrtiz90/quic-go-fec
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Coding after encryption?
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As stated in ‘Coding for QUIC’ document:  3.3. FEC Protection Within an Encrypted Channel

FEC encoding is applied before any QUIC encryption and authentication
processing. Source symbols, that constitute the data units used by
the FEC codec, contain cleartext data (application and/or QUIC data).

https://tools.ietf.org/html/draft-swett-nwcrg-coding-for-quic-03#section-3.3

Work on rQUIC started as addition of FEC to QUIC in the most practical and efficient possible manner.
The focus was the resulting implementation. Therefore, no ID was consulted prior to this work.

Encoding after encryption was chosen for two main reasons:
1) Easier implementation
2) Easier scaling to QUIC-NC

NC = Network Coding


https://tools.ietf.org/html/draft-swett-nwcrg-coding-for-quic-03#section-3.3
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Implementation
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* rQUIC is based on quic-go (https://github.com/lucas-clemente/quic-go). 1he base
code was taken after v0.7.0 release.

* Rather than testing all existing coding schemes, the work focused on
coding strategy implementation, only using XOR to code.

* In NC terms, generation sizes of n are protected by 1 coded packet.
Coding rate is adaptive.

* 4 bytes long FEC header is added with the following fields:
* Type: protected, unprotected and coded.
e BlockID: in NC terms, generation ID.
* Ratio: generation size.
e Count: packet order in FEC block (generation).


https://github.com/lucas-clemente/quic-go

Implementation overview
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Adaptive coding rate reduces overhead in the absence of losses.

The algorithm is based on steering residual losses, which are packets that need to be retransmitted
due to FEC failing to recover.

Given the period i of length T, The residual losses are then The algorithm:
the residual loss is computed as: averaged over N periods: if € < Vthen( )
r=r-(1-6
retransmissions 1 z"’ else
€ = . — € =— €; o
' transmissoins — retransmisions NLu-_1"' . : =7r-(1+6)
endail

Evolution of rQUIC’s adaptive FEC ratio over time, for

6 and y can be seen as aggressiveness parameters of _ _ ,
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 rQUIC is another modification of QUIC with FEC, different from the known
one (by F. Michel).

e Although tested with only 1 coding scheme, it significantly improves bulk
transfer traffic.

Summary

* Transparent design (to QUIC) which eases new coding schemes integration.

e With this implementation it is easier to give the next step:
QUIC with Network Coding.

* Upcoming features:
* More coding schemes (‘light-weightest’ first)
* Base code update (inclusion of new quic-go features)

Current code improvements (such as adaptation in slow start phase and out of order
packets management)

Multipath
Network Coding
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