rQUIC
Another QUIC + FEC approach

Mihail Zverev, Pablo Garrido,

Ramdn Agliero, Ozgii Alay, Josu Bilbao

Sifula ikerlan

174 Simula

What is rQUIC?
aved 1kerlan Q

* FEC prevents retransmissions, enabling robust and low latency
communications.

* At the beginning of QUIC there was an unsuccessful intent to
implement FEC.

* Recently F. Michel et al. have developed and presented a QUIC + FEC
Imp|ementathn. Presented at IFIP 2019

* In parallel, there was another QUIC + FEC development, led by Pablo
Garrido, with a different approach, and different results.

Presented at IFIP 2019
r To be presented at
GLOBECOM 2019

https://github.com/pgOrtiz90/quic-go-fec

* Which QUIC + FEC is better and in which cases? Is it worth merging?

https://github.com/pgOrtiz90/quic-go-fec

174 Simula

Coding after encryption?
ead 1kerlan 5 YP

As stated in ‘Coding for QUIC’ document: 3.3. FEC Protection Within an Encrypted Channel

FEC encoding is applied before any QUIC encryption and authentication
processing. Source symbols, that constitute the data units used by
the FEC codec, contain cleartext data (application and/or QUIC data).

https://tools.ietf.org/html/draft-swett-nwcrg-coding-for-quic-03#section-3.3

Work on rQUIC started as addition of FEC to QUIC in the most practical and efficient possible manner.
The focus was the resulting implementation. Therefore, no ID was consulted prior to this work.

Encoding after encryption was chosen for two main reasons:
1) Easier implementation
2) Easier scaling to QUIC-NC

NC = Network Coding

https://tools.ietf.org/html/draft-swett-nwcrg-coding-for-quic-03#section-3.3

QUIC connection ‘

Encode
Encrypt
Send

174 Simula

Sued 1kerlan

QUIC connection
QUIC connection

Receive
Decrypt
Recode
Encrypt
Send Receive
Decrypt
Recode
Encrypt
Send Receive
Decrypt
Decode

Encode
Encrypt
Send

QUIC connection

Receive
Hack
encryption
(if you can)
Decrypt
Recode
Encrypt
Send Receive
Hack
encryption
(if you can)
Decrypt
Recode
Encrypt
Send

Receive
Decrypt
Decode

Encrypt
Encode
Send

QUIC connection

Receive

Recode

Send Receive
Recode
Send

Network Coding and encryption

Receive
Decode
Decrypt

174 Simula

Implementation
ead 1kerlan P

* rQUIC is based on quic-go (https://github.com/lucas-clemente/quic-go). 1he base
code was taken after v0.7.0 release.

* Rather than testing all existing coding schemes, the work focused on
coding strategy implementation, only using XOR to code.

* In NC terms, generation sizes of n are protected by 1 coded packet.
Coding rate is adaptive.

* 4 bytes long FEC header is added with the following fields:
* Type: protected, unprotected and coded.
e BlockID: in NC terms, generation ID.
* Ratio: generation size.
e Count: packet order in FEC block (generation).

https://github.com/lucas-clemente/quic-go

Implementation overview

avved 1kerlan

rQUIC Server rQUIC Client
UDP - Standard socker API UDP - Standard socker API

Stcam

Qh - QUIC header - FEC
FLAGS (1) | Conn ID=x (8) Versions (4)
QUIC Session Driver NONCEs+ (32) PN+ (1/2/4/8) QUIC Session D ——
lectmn
QUIC Packet Cungestmn FEC Header (4) |
Control
Qh| Payload QUIC Packet
i FEC header
EHL‘I}'. QUIC Pac Type (1) |BlockID(l) |Ratic (1) | Count({l)

Qh| Payload

| [Eneo QuiC Pkt

= S —

Red borders show new or modified QUIC blocks.

1T Simula Adaptive coding rate

ead 1kerlan

Adaptive coding rate reduces overhead in the absence of losses.

The algorithm is based on steering residual losses, which are packets that need to be retransmitted
due to FEC failing to recover.

Given the period i of length T, The residual losses are then The algorithm:
the residual loss is computed as: averaged over N periods: if € < Vthen()
r=r-(1-6
retransmissions 1 z"’ else
€ = . — € =— €; o
' transmissoins — retransmisions NLu-_1"' . : =7r-(1+6)
endail

Evolution of rQUIC’s adaptive FEC ratio over time, for

6 and y can be seen as aggressiveness parameters of _ _ ,
. different link loss rates with 0 (no loss), 1, 2, 3 and 5%.
the algorithm.

0 and y are configurable and determine the tolerance
to FEC recovery failure.

After analysis of the behavior under different network

topologies, we choose
T =3-RTT 6 = 0.33 Yy = 1% %

a=0.0 @ = 0.0] =—— = 0.02

a = 0.03 a = 0.05
[[

100
30

FEC ratio, r
.
S

| I I \
15 20 25

t (seconds)

L
[y
e}

UC

UNIVERSIDAD
DE CANTABRIA

1kerlan

Completion Time (ms)

-

rQUIC fairness check

QUIC session coexisting with (1) rQUIC session
and (2) another QUIC session (25ms,
T T

20 Mbps).

150 T T

100

—— rQUIC-QUIC —— QUIC-QUIC
|

0 ! ! !
0% 1% 2% 3% 4% 5%

Link error rate, o

rQUIC does not impair QUIC

/

Bulk
Transfer
Measured output: (20 MB for
. . WiFi/LTE and
Completion ratio 26/3G, 5 MB

Overhead =

_ Completion Time rQUIC for satellite)
B Completion Time QUIC
Overhead HTTP/2
FEC packets transfer
Total packets (fickr.com)
(30 objects,
1.776 KiB)

Completion ratio, §

Completion ratio, &

—_

25 ms, 20 Mbps
(WIFi/LTE)

T
| = N

e

[R B N
0% 1% 2% 3% 5%
link error rate, «

s

[B B
0% 1% 2% 3% 5%
Link error rate, «

Completion ratio, &

Completion ratio, §

SIMULATIONS

Linux Container E mu I at | on Linux Container
QuIC . QUIC 452
Client == scenario Server d

ot

ut

—

[

ns-3 Simulated Network

1 Gbps

(=~ (=~
CSMA - p2p: {bw, rit} - “C5hia

1 Gbps

100 ms, 10 Mbps
(2G/3G)

i iéif,

[R B
0% 1% 2% 3% 5%
Link error rate, o

-

0% 1% 2% 3% 5%
Link error rate, o

Completion ratio,

Completion ratio, &

400 ms, 1.5 Mbps Overhead
(Satellite)
T T 25 T T
1 71 | 20 il 25 ms
IS BE 100 ms
- 2 15 BE 400 ms
5 = ; 4 0
S 5
[R T 0
0% 1% 2% 3% 5% 0% 1% 2% 3% 5%
Link error rate, o Link error rate, o
5 25
- . 5 il 2‘5 ms‘ I
I S 20 BE 100 ms
= 15 B0 400 ms
v
5L 1 510
® é S
[R R | 0

0% 1% 2% 3% 5%
Link error rate, «

0% 1% 2% 3% 5%

Link error rate, o

Evaluation

PHYSICAL SETUP
(provided by -)

Wired Internet
Core network
i

-E3]
QUIC
Server

QuIC

Client Core network

Physical setup

1.5
ur
2 05 R
S
0 | |
LTE WLAN
1.5 T

Completion ratio, &
(=] —
I
|

| |
LTE WLAN

ead 1kerlan
 rQUIC is another modification of QUIC with FEC, different from the known
one (by F. Michel).

e Although tested with only 1 coding scheme, it significantly improves bulk
transfer traffic.

Summary

* Transparent design (to QUIC) which eases new coding schemes integration.

e With this implementation it is easier to give the next step:
QUIC with Network Coding.

* Upcoming features:
* More coding schemes (‘light-weightest’ first)
* Base code update (inclusion of new quic-go features)

Current code improvements (such as adaptation in slow start phase and out of order
packets management)

Multipath
Network Coding

Thank you

Mihail Zverev mzverev@ikerlan.es
Pablo Garrido pgarrido@ikerlan.es
Ramon Agliero ramon@tlmat.unican.es
Ozgii Alay ozgu@simula.no

Josu Bilbao jbilbao@ikerlan.es

dan

UNIVERSIDAD
DE CANTABRIA

mailto:mzverev@ikerlan.es
mailto:pgarrido@ikerlan.es
mailto:ramon@tlmat.unican.es
mailto:ozgu@simula.no
mailto:jbilbao@ikerlan.es

