
Pushed Request Objects
Daniel Fett, Torsten Lodderstedt, Brian Campbell

IETF-105

Pushed Request Objects
● Extension of JWT Secured Authorization Request (draft-ietf-oauth-jwsreq)

(JAR) that moves request object management to the AS
● Specification currently being worked on in the OpenID Foundation’s FAPI

WG based on experiences gathered in OpenBanking/PSD2

https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md

https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md

Rationale
● JAR is great for ensuring integrity, authenticity, and confidentiality of

authorization requests but also has some drawbacks
● request

○ might result in lengthy urls

● request_uri
○ client needs to handle inbound requests from the AS
○ client needs to store (a potentially large number of) objects & handle clean-up
○ availability and latency of client’s backend influence authorization process
○ AS has to make outbound HTTP requests → problems of server-side request forgery

Pushed Request Object
● Moving the responsibility for managing request objects from client to AS
● New "request object endpoint":

○ Client calls this endpoint to deliver its request objects
○ Client is provided with a unique URI
○ Which is then used as request_uri parameter value

Two modes:

1. request object as JWT
2. "raw" request object in JSON format

Pushing the request object to the AS (JSON)
POST https://as.example.com/ros/ HTTP/1.1
Host: as.example.com
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3
Content-Type: application/json
Content-Length: 1288

{
"response_type":"code",
"client_id":"s6BhdRkqt3",
"redirect_uri":"https://client.example.org/cb",
"scope":"accounts",
"state":"af0ifjsldkj",
"code_challenge_method":"S256",
"code_challenge":"5c305578f8f19b2dcdb6c3c955c0a...97e43917cd"

}

Pushing the request object to the AS (JWT)
POST https://as.example.com/ros/ HTTP/1.1
Host: as.example.com
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3
Content-Type: application/jwt
Content-Length: 1288

eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiA
(... abbreviated ...)
zCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

Obtaining the request_uri
HTTP/1.1 201 Created
Date: Tue, 2 May 2017 15:22:31 GMT
Content-Type: application/json

{
"iss": "https://as.example.com/",
"aud": "s6BhdRkqt3",
"request_uri": "urn:example:MTAyODAK",
"exp": 1493738581

}

Sending the authorization request
https://server.example.com/authorize?

request_uri=urn%3Aexample%3AMTAyODAK

Advantages
● No request object management at the client
● Deployments can choose from two options:

○ “Raw” JSON mode is easy to use
○ JWT mode with application level signing & encryption (e.g., for non-repudiation)

● Client authentication before the authorization process is started
○ Refuse unauthorized clients early
○ Authorization process may rely on client identity

● Solid foundation for conveying rich authorization requests
 (aka structured scopes)

Shall we bring this to the IETF?

