Address-Based Website Fingerprinting

Christopher A. Wood, Nikita Borisov, Simran Patil
IETF 105 - Montreal - PEARG
Recent Trends

Focus shift from data confidentiality to privacy

• *What* resource are they accessing?

• *Who* is accessing a resource?

Data encryption in transit is growing in use

• DNS-over-HTTPS, DNS-over-TLS, TLS ESNI, etc.
Connection Privacy

Adversary: local and passive observer

Goal: learn information about a network connection and (optionally) link it to a specific client in an **open world** model

Features available:

- Network addresses
- Packet timing and sizes
- Cleartext information
Connection Privacy

Adversary: local and passive observer

Goal: learn information about a network connection and (optionally) link it to a specific client in an *open world* model

Features available:

- Network addresses
- Packet timing and sizes
- Cleartext information

Censors might use this information to block specific connections[^1]

Connection Fingerprinting

- User Data
- URI
- SNI
- DNS
- IP Address
- Traffic Patterns

- TLS (HTTPS)
- ESNi
- DoT/DoH
Connection Fingerprinting

Current State

DNS Resolver [X.X.X.X]

Client [4.3.2.1]

Query example.com

A=1.2.3.4

Server [1.2.3.4]

TCP

TLS [SNI=example.com] [ALPN=h2]

Create HTTP/2 streams

GET index.html

GET resources

Legend

Ciphertext

Plaintext

Devil
Connection Fingerprinting
DoTH and ESNI

This address did not change*

*Though it may with load balancers present
Experiments*

Setup

• MIDA Chromium-based web crawler using Alexa’s top million domains (closed world)

• zDNS [1] for name resolution

Data collection

• Load pages with MIDA and collect HAR-like traces

• Resolve domains with zDNS (bypassing stub cache)

[1] https://github.com/zmap/zdns

* “What Can You Learn from an IP?” Simran Patil, Nikita Borisov, ANWR 2019
Address Anonymity Set*

* “What Can You Learn from an IP?” Simran Patil, Nikita Borisov, ANWR 2019
Address Anonymity Set*

* “What Can You Learn from an IP?” Simran Patil, Nikita Borisov, ANWR 2019
Page Load Fingerprint (PLF)

Page load fingerprints (PLFs) contain the set of connections and their traffic associated with a page load event

• DNS query patterns

• TCP/TLS connection patterns

Even with all elements encrypted, the patterns are often uniquely identifying

Example: Loading https://nytimes.com in Safari
Adversary: local and passive observer

Goal: learn information about a page load and (optionally) link it to a specific client in an open world model

Features available:

- Connection fingerprints
- Traffic patterns
Page Load Fingerprinting

<table>
<thead>
<tr>
<th>User Data</th>
<th>URI</th>
<th>SNI</th>
<th>DNS</th>
<th>IP Address</th>
<th>Traffic Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Data</td>
<td>URI</td>
<td>SNI</td>
<td>DNS</td>
<td>IP Address</td>
<td>Traffic Patterns</td>
</tr>
<tr>
<td>User Data</td>
<td>URI</td>
<td>SNI</td>
<td>DNS</td>
<td>IP Address</td>
<td>Traffic Patterns</td>
</tr>
<tr>
<td>User Data</td>
<td>URI</td>
<td>SNI</td>
<td>DNS</td>
<td>IP Address</td>
<td>Traffic Patterns</td>
</tr>
</tbody>
</table>

- **DNS Query Patterns**
- **Address Sets**
- **Aggregate Traffic Patterns**
Page Loads

Client [4.3.2.1]

GET https://office.com/…

GET https://wusofficehome.msocdn.com/…

GET https://statics-uhf-wus.akamaized.net/…

GET https://mem.gfx.ms/…

Server [1.2.3.4]
Page Loads

Adv sees each connection in quick succession from the same source
Page Load Statistics*

Upon loading the Alexa top 1 million pages, each page loaded on average

- 96 different URLs
- 16.5 different domains

* “What Can You Learn from an IP?” Simran Patil, Nikita Borisov, ANWR 2019
PLF Anonymity Set*

* “What Can You Learn from an IP?” Simran Patil, Nikita Borisov, ANWR 2019
PLF Anonymity Set*

* "What Can You Learn from an IP?" Simran Patil, Nikita Borisov, ANWR 2019
Connection encryption

Required for

Connection privacy

Required for

Page load privacy
Related Issues

- Happy Eyeballs and connection racing may add more information to PLFs

+ Connection coalescing removes information from PLFs

+ CDN consolidation merges application PLFs

+ Proxies hide destination IP addresses

+ DNS-based load balancing may redirect clients to different servers, or even different providers
Website Fingerprinting

Address-based website fingerprinting may become harder with proxies, multiplexing, coalescing, etc.

Should focus shift towards traffic analysis?

Tor and academic research communities struggle with this problem
Next Steps

Call for research in website fingerprinting

Summarize and document existing research for posterity [1]

Work with academic community to develop and measure mitigations or countermeasures

Questions?