
Privacy-Conscious Threat Detection 
Using DNSBLOOM

Roland van Rijswijk-Deij, Gijs Rijnders,  
Matthijs Bomhoff and Luca Allodi

Introduction
• Privacy of DNS traffic between client and resolver currently has a lot of

attention in the IETF, e.g.:

• DPRIVE working group in the IETF, standardised DNS-over-TLS

• Deployment of DNS-over-TLS by e.g. 1.1.1.1, 8.8.8.8, 9.9.9.9 and
others, default support in e.g. Android P

• The buzz around DNS-over-HTTPS (DoH)

• But the focus of these is mostly on privacy of traffic in-flight

Elephant in the Room

Internet

DNS
resolver

authoritative
nam

e servers

A

B

C

Fig. 3. Monitoring vantage points around a DNS resolver

implementation. This is changing with the standardization of
DNS-over-TLS [9], that would make data collection from
vantage point A impossible1. On the other hand, many DNS
resolver implementations support direct collection of DNS
query data from the running resolver software through the
so-called dnstap interface2 (vantage point B). This interface
always outputs packets in cleartext.

Inspection of DNS queries from clients for security purposes
roughly has two purposes. First, the detection of new types of
threats, such as new botnets. The second purpose is signature-
based detection of pre-identified threats. The work in this paper
focuses on the second; based on pre-identified indicators of
compromise (IoCs) in the form of domain names, DNSBLOOM
identifies past and ongoing threats in a network.

C. Related Work

Numerous commercial solutions exist in the domain of
signature-based threat detection from DNS data; academic
work in this space almost exclusively focuses on the detection
of new types of threats based on DNS traffic [10].

Focusing on the use of Bloom Filters in the network space,
early work by Broder and Mitzenmacher [11] provides a
survey of the use of Bloom Filters, focusing on performance
improvements in network applications. A more recent survey
by Geravand and Ahmadi [12] looks at the application of
Bloom Filters for network security purposes. Much of the
work surveyed in their paper focuses on the use of Bloom
Filters to perform efficient data lookups. Some work, though,
specifically uses Bloom Filters as a privacy-enhancing method,
for example in the context of anonymous routing and packet-
based attack attribution. A representative example is work by
Zhu and Mutka [13], that uses Bloom Filters to enhance privacy
for instant messaging notification.

With respect to attack detection, Bloom Filters have been
used as a means to more efficiently detect DNS amplification
DDoS attacks. Sun et al. [14] propose a system that uses
Bloom Filters to efficiently match DNS queries to responses.
Their approach leverages the assumption that valid DNS traffic
consists of matching query/response pairs, and that traffic that
only contains responses is anomalous and indicative of an attack.

1For public DNS-over-TLS services, see https://dnsprivacy.org/.
2http://dnstap.info/

Di Paola and Lombardo [15] propose a simplified approach
(compared to Sun et al.) for detecting DNS amplification
attacks, with a lower false positive rate, due to the use of
different filter parameters. Bloom Filters have also been used
to enhance the performance and memory footprint of signature-
based spam filtering, for example by Yan and Cho [16].

More specific to DNS, the popular open source PowerDNS
Recursor resolver implementation uses a Bloom Filter to track
newly observed domains3. Tracking such domains can, for
example, help detect phishing and spam e-mails, as these often
use “fresh” domains directly after they have been registered in
the DNS (and thus have likely not been observed on resolvers
before they are used for a spam run) [17].

Finally, as we will also discuss later on, Bloom Filters are
not themselves immune to attacks. Gerbet et al. [5] describe
various types of attacks on Bloom Filters that aim, for example,
to oversaturate filters to artificially raise the probability of a
false positive. Their work also explains how implementers can
design their systems to be more resilient against the attacks
discussed in the paper.

III. APPROACH

A. Goals and Challenges

With DNSBLOOM we want to operationalise tracking of
DNS query information without compromising on user security
by infringing the confidentiality of highly privacy-sensitive
user information [1], [18]. Before specifying this goal in more
detail, we should first consider why we wish to track this
information over time. As stated above, knowledge of DNS
queries that occurred in the past can prove useful if a new
indicator of compromise is discovered (in other words: a new
domain name is associated with malicious activity). A query
log can be used to see if this query name has already been
observed on the network, indicating, for example, that some
host has been infected, or some users clicked on suspicious
links in a phishing e-mail. Consider, for example, the outbreak
of the WannaCry ransomware in 2017 [19]. Months after
this ransomware was first observed, and only after a massive
outbreak, a security researcher discovered that a very specific
DNS query that the ransomware performed was actually a so-
called ‘kill switch’ [20]. Using a log of past queries, network
administrators could have detected past activity related to this
ransomware by looking for the kill-switch domain in their logs.

The question we ask is how can we do this without collecting
massive amounts of otherwise privacy-sensitive data from the
users? Ideally, we would still like to retain useful information
to make strategic and tactical decisions such as: should network
administrators search for, or start monitoring for a particular
new threat? Or: when was an IoC associated with a high profile
threat first observed, and in which parts of the network?

More specifically, we identify the following six goals:
G1 Log DNS queries over potentially long periods of time.

G2 Avoid storing personally identifiable information (PII).

3See https://doc.powerdns.com/recursor/settings.html under
new-domaintracking.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)100

Resolver Operators

• Resolver operators can still observe and collect DNS query traffic

• And they have legitimate reasons to do so

• For example:

• To detect indicators of compromise in DNS traffic (e.g. in enterprise
networks)

• To monitor threats in large user bases (e.g. Quad9)

Privacy-Conscious Monitoring

• We asked ourselves: 
"How can we detect if certain DNS queries were performed, while
respecting the privacy of users?"

• Last year, we developed a potential solution for this problem:  
use of so-called Bloom Filters

• Working prototype available in open source

• Tested in production at SURFnet (national research network)

Bloom Filters
• Developed in the 1970s to speed up database lookups

• Highly efficient, insertion and lookup are ~𝒪(1)

• Bloom Filters are like a set with a probabilistic membership test

• For a given Bloom Filter 𝐵 and an element 𝑛, we can test the following:

n 2 B?
no → 𝑛 is guaranteed not to be in 𝐵

yes → 𝑛 is highly likely in 𝐵, with a
 small probability 𝑝ε of this being 
 a false positive

Bloom Filters
www.example.com

a029e8a9 c3faa9f8 cb745caa 8136503e 3a6dccaa c9f4c130 574c0e58 7235970e

(set of) hash function(s)

index #1 index #2 index #3 index #4 index #5 index #6 index #7 index #8

set bits to 1 in bit array using indices

Bloom Filters
1

0

0

1

1

0

1

1

www.example.com

www.example.org

true-negative.net

false-positive.org

set
elements

look up
elements

Bloom Filter Parameters

• Tradeoff between (low) false positive rate and a reasonable filter size

• Parameters:
• Number of hash functions 𝑘 → number of indices
• Size of bit array 𝑚
• Expected number of distinct elements 𝑛

• The formula below approximates the probability of a false positive 𝑝ε:

p✏ ⇡ (1� e�
kn
m)k

The Idea
• Insert all queries from clients of a resolver into a Bloom Filter

• Then, we can check if a name was queried for, but not by whom and also not
exactly when; this is sufficient for network-level threat monitoring

• Privacy properties of Bloom Filters:
• Non-enumerable
• By mixing queries from many users in a single filter, tracking becomes harder
• Due to mathematical properties of Bloom Filters, we can combine different

filters, so we can further aggregate data over time (making it even harder
to track user)

Tuning Filter Sizes
• Our prototype creates Bloom Filters per

hour

• Filters tuned to allow aggregation of  
24 hourly filters to one day at maximum  
𝑝ε = 0.001 (or one in a thousand)

• Prototype supports "auto tuning", in
which it first gathers statistics on query
traffic for some time and then suggests
parameters

• Future extension: continuous auto tuning

TABLE I
EXAMPLE OF DATA INSERTED INTO A BLOOM FILTER

Description Value Description Value

FQDN evil.domain.com FQDN Organisation A@evil.domain.com

2nd-level domain.com 2nd-level Organisation A@domain.com

Label 1 evil Label 1 Organisation A@evil

Label 2 domain Label 2 Organisation A@domain

0

2 K

4 K

6 K

Jul 01 Jul 08 Jul 15 Jul 22
Time

Q
ue

rie
s

pe
r S

ec
on

d

Number of DNS Queries Over Time

Fig. 5. SURFnet DNS resolver traffic during validation

functionality to map queries from certain IPv4 or IPv6 network
prefixes to organisational entities. It does this by matching
source IP addresses in incoming queries. The entity that a query
is mapped to is then pre-pended to all of the data that is inserted
into the filter. For example, Table I shows what information is
added to the Bloom Filter if a query for evil.domain.com
arrives from a prefix that is mapped to ‘Organisation A’. As the
table shows, the fully qualified domain name (FQDN), second-
level domain (SLD) and labels are added directly, and with the
entity name prefixed. The direct entry can be used to perform a
fail-fast lookup, for instance, if many different entities exist in
the network, to prevent having to perform a lookup for every
entity all the time. To meet goal G4, our prototype cannot
simply link queries with timestamps as this association is lost
in the Bloom filter; instead, DNSBLOOM aggregates queries
in time slots of predefined length that provide an approximate
indication of time of occurrence.

IV. VALIDATION

In order to validate our approach, we deployed the DNS-
BLOOM prototype at SURFnet, which operates production
DNS resolvers for the higher education and research sector
in the Netherlands. Our prototype relied on data from all of
SURFnet’s production resolvers, which on average see in the
order of 5,000 to 10,000 queries per second at peak times
and roughly 200,000 unique client IPs per day. Thus, our
validation environment is likely comparable to a medium-size
ISP. We evaluated the performance of the prototype over a
period spanning three weeks, from July 1st to July 23rd, 2018.
Figure 5 shows the average query load over the validation
period. Note that the academic summer holiday starts in early
July, hence the slow decline in query load.

As discussed in Section III-B, we first needed to determine
suitable parameters k and m to configure our Bloom Filter. In
order to do this, we ran the prototype in dry-run mode for one
week. We ended up picking k = 10 and m ⇡ 491 Mbits to
get an estimated p✏ of 10�3 (in other words: a false positive

0

10 M

20 M

30 M

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08
Day

U
ni

qu
e

D
om

ai
n

N
am

es

Legend
Day

Hour

Number of Unique Domain Names over Time

Fig. 6. Observations for n per hour vs. per day

probability of 1 in 1,000). We used the daily estimate for n,
because as Figure 6 shows, the number of distinct queries is
significantly higher when aggregated over a whole day.

A. Scenarios

In order to evaluate the performance of the prototype, we
defined three test scenarios. Ethical and privacy implications
of the data collection are discussed in Section V. All three sce-
narios reflect common threat detection situations encountered
by security personnel at SURFnet.

Scenario 1: Booters — Our first scenario concerns so-
called Booters. These are websites that provide DDoS attack
capabilities on demand, allegedly to enable their users to ‘stress-
test’ their own network [24]. Since 2012, SURFnet observes
an increasing trend of (often young) students using Booters
to attack their schools, for example to disrupt online teaching
or exams. Because of the severity of this problem, SURFnet
is interested in learning more about Booter attacks. As they
suspect these attacks to be inside jobs, SURFnet’s privacy
officer gave permission to monitor for DNS queries specific to
Booter websites, based on a blacklist of Booters [25]. Then,
if an (attempted) attack is observed, the query logs could be
consulted to check if a DNS query for a Booter was observed
on the school under attack around the time of said attack.

Scenario 2: Spam filtering — The second scenario looks at
spam filtering. SURFnet runs a spam filtering service for its
constituency, which processes roughly 10 million mails per
day. One of the key functions of this service is to check the
IP addresses of mail-sending hosts against IP blacklists. These
blacklists contain IPs that in some form have been associated
with spam operations. As ground truth, we receive a daily list
of blacklist hits (that is: sending IP addresses that appeared
on one or more blacklists), and check for DNS queries of the
reverse DNS names associated with these IPs. Since SURFnet’s
mail filtering service uses the same DNS resolvers used by
DNSBLOOM, we expect to observe these queries. In addition
to this, we also expect to observe queries for these blacklisted
IPs from other clients on the network, e.g., from universities
or other institutions that run their own mail service and do not
rely on SURFnet’s spam filtering.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)102

Filter Input
• Our prototype implementation allows distinguishing between

organisations on a network (specific requirement of test environment)

• We insert the full query name, the second level domain and every label
except for the public suffix

• Inserted twice, generic and with organisation name prepended
TABLE I

EXAMPLE OF DATA INSERTED INTO A BLOOM FILTER

Description Value Description Value

FQDN evil.domain.com FQDN Organisation A@evil.domain.com

2nd-level domain.com 2nd-level Organisation A@domain.com

Label 1 evil Label 1 Organisation A@evil

Label 2 domain Label 2 Organisation A@domain

0

2 K

4 K

6 K

Jul 01 Jul 08 Jul 15 Jul 22
Time

Q
ue

rie
s

pe
r S

ec
on

d

Number of DNS Queries Over Time

Fig. 5. SURFnet DNS resolver traffic during validation

functionality to map queries from certain IPv4 or IPv6 network
prefixes to organisational entities. It does this by matching
source IP addresses in incoming queries. The entity that a query
is mapped to is then pre-pended to all of the data that is inserted
into the filter. For example, Table I shows what information is
added to the Bloom Filter if a query for evil.domain.com
arrives from a prefix that is mapped to ‘Organisation A’. As the
table shows, the fully qualified domain name (FQDN), second-
level domain (SLD) and labels are added directly, and with the
entity name prefixed. The direct entry can be used to perform a
fail-fast lookup, for instance, if many different entities exist in
the network, to prevent having to perform a lookup for every
entity all the time. To meet goal G4, our prototype cannot
simply link queries with timestamps as this association is lost
in the Bloom filter; instead, DNSBLOOM aggregates queries
in time slots of predefined length that provide an approximate
indication of time of occurrence.

IV. VALIDATION

In order to validate our approach, we deployed the DNS-
BLOOM prototype at SURFnet, which operates production
DNS resolvers for the higher education and research sector
in the Netherlands. Our prototype relied on data from all of
SURFnet’s production resolvers, which on average see in the
order of 5,000 to 10,000 queries per second at peak times
and roughly 200,000 unique client IPs per day. Thus, our
validation environment is likely comparable to a medium-size
ISP. We evaluated the performance of the prototype over a
period spanning three weeks, from July 1st to July 23rd, 2018.
Figure 5 shows the average query load over the validation
period. Note that the academic summer holiday starts in early
July, hence the slow decline in query load.

As discussed in Section III-B, we first needed to determine
suitable parameters k and m to configure our Bloom Filter. In
order to do this, we ran the prototype in dry-run mode for one
week. We ended up picking k = 10 and m ⇡ 491 Mbits to
get an estimated p✏ of 10�3 (in other words: a false positive

0

10 M

20 M

30 M

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08
Day

U
ni

qu
e

D
om

ai
n

N
am

es

Legend
Day

Hour

Number of Unique Domain Names over Time

Fig. 6. Observations for n per hour vs. per day

probability of 1 in 1,000). We used the daily estimate for n,
because as Figure 6 shows, the number of distinct queries is
significantly higher when aggregated over a whole day.

A. Scenarios

In order to evaluate the performance of the prototype, we
defined three test scenarios. Ethical and privacy implications
of the data collection are discussed in Section V. All three sce-
narios reflect common threat detection situations encountered
by security personnel at SURFnet.

Scenario 1: Booters — Our first scenario concerns so-
called Booters. These are websites that provide DDoS attack
capabilities on demand, allegedly to enable their users to ‘stress-
test’ their own network [24]. Since 2012, SURFnet observes
an increasing trend of (often young) students using Booters
to attack their schools, for example to disrupt online teaching
or exams. Because of the severity of this problem, SURFnet
is interested in learning more about Booter attacks. As they
suspect these attacks to be inside jobs, SURFnet’s privacy
officer gave permission to monitor for DNS queries specific to
Booter websites, based on a blacklist of Booters [25]. Then,
if an (attempted) attack is observed, the query logs could be
consulted to check if a DNS query for a Booter was observed
on the school under attack around the time of said attack.

Scenario 2: Spam filtering — The second scenario looks at
spam filtering. SURFnet runs a spam filtering service for its
constituency, which processes roughly 10 million mails per
day. One of the key functions of this service is to check the
IP addresses of mail-sending hosts against IP blacklists. These
blacklists contain IPs that in some form have been associated
with spam operations. As ground truth, we receive a daily list
of blacklist hits (that is: sending IP addresses that appeared
on one or more blacklists), and check for DNS queries of the
reverse DNS names associated with these IPs. Since SURFnet’s
mail filtering service uses the same DNS resolvers used by
DNSBLOOM, we expect to observe these queries. In addition
to this, we also expect to observe queries for these blacklisted
IPs from other clients on the network, e.g., from universities
or other institutions that run their own mail service and do not
rely on SURFnet’s spam filtering.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)102

Real-World Tests
• We tested this for three weeks on busy DNS resolvers at SURFnet

• We studied three use cases:

• Detection of so-called "Booters"

• Hits on e-mail blacklists

• Hits of high-value indicators-of- 
compromise for the so-called 
National Detection Network

0

2 K

4 K

6 K

Jul 01 Jul 08 Jul 15 Jul 22
Time

Q
ue

rie
s

pe
r S

ec
on

d

Number of DNS Queries Over Time

Predicted vs. Actual FPR
• We ran auto tuning for a week and

chose the following filter parameters: 
𝑘 = 10 
𝑚 ≈ 491 Mbits (±59MB)

• Goal: daily FPR of one in a thousand

• Of course, we had to estimate the
number of elements inserted (𝑛)

• After using a filter, we can calculate
the actual false positive rate (without
knowing 𝑛):

100

10−1

10−2

10−3

10−4

10−5

10−6

Jun 30 Jul 02 Jul 04 Jul 06 Jul 08 Jul 10 Jul 12 Jul 14 Jul 16 Jul 18 Jul 20 Jul 22
Day

Ac
tu

al
 E

xp
ec

te
d

FP
 R

at
e

(L
og

10
)

Bloom Filter Actual Expected False Positive Rate over Time

Fig. 7. Actual expected false positive probability (pa) of 24h Bloom Filters

100

10−3

10−5

10−10

10−15

Jul 01 Jul 04 Jul 07 Jul 10 Jul 13 Jul 16 Jul 19 Jul 22
Hour

Ac
tu

al
 E

xp
ec

te
d

FP
 R

at
e

(L
og

10
)

Bloom Filter Actual Expected False Positive Rate over Time

Fig. 8. Actual expected false positive probability (pa) of hourly Bloom Filters

Scenario 3: National Detection Network — Our third,
and final scenario concerns the so-called National Detection
Network (NDN) [26]. This is a collaboration between the Dutch
National Cyber Security Centre and key players in important
sectors of Dutch society. The goal of NDN is sharing of
high-profile indicators-of-compromise. In the NDN, these IoCs
are shared through a Malware Information Sharing Platform
(MISP) [27]. Many of the IoCs in the MISP contain threats
that can be identified based on domain names. Up until now,
SURFnet has not been able to use this information, though,
as recording all DNS traffic to its resolvers simply to detect
potential IoCs from the NDN was deemed too privacy-invasive.
In this final scenario, we use DNSBLOOM to detect threats
shared through the NDN MISP. To also collect ground truth in
this scenario, we use a simple process. We first look for threats
that re-occur in multiple Bloom Filters (over multiple hours).
Then, we check the associated threat in the MISP, to see if
the threat is serious. If it is, we then start specific monitoring
for queries associated with this threat, as SURFnet’s privacy
policy allows such monitoring for network security purposes.

B. Results

We first focus on the performance of the Bloom Filters. Starting
with CPU workload, during the validation phase our prototype
collected data from three operational DNS resolvers and never
exceeded a single-core CPU load of 10%. Based on this, we
argue that it is perfectly feasible to run DNSBLOOM as a side
process directly on the DNS resolver. Recall that – just like
insertions – lookups can be performed in constant time O(k),
this means that we expect lookup performance to be similar
to insertion performance. Indeed, an unoptimised test run that
loads the Bloom filter from disk for every run takes an average
of 1.3 seconds to perform 230,000 lookups over 1,000 runs.

0

25

50

75

100

A B C D E

Type of Organization

N
u

m
b

e
r

o
f

B
o

o
te

r
Q

u
e

ry
 H

its

Fig. 9. Booter queries grouped per type of institution on SURFnet’s network

We also checked the actual false positive rate for Bloom
Filters aggregated per day. Recall our target p✏ was 10�3 for
daily aggregate filters. As Figure 7 shows, during the validation
the expected false positive rate for daily aggregate Bloom
Filters stayed well below this target. Given that the hourly
filters need to use the same parameters in order for aggregation
to be possible, the pa is much lower for the individual hourly
filters, as illustrated by Figure 8. This means that the estimation
process during the dry-run of the prototype performed well
and accurately suggested values for k and m. We do observe a
gradual decrease in the actual false positive probability pa over
time. This is likely due to the decrease in query volume, also
observed in Figure 5. While this implies a lower probability
of a false positive, thus increasing the reliability of lookups, a
pa that is far below the target can also lead to wasteful use of
storage space, as the filter size m could have been smaller.

Scenario 1 — To evaluate how the Bloom Filters performed
in the Booter scenario, we systematically checked every Bloom
Filter collected over the validation period for queries to domain
names on the Booter blacklist [25]. Then, to verify that
DNSBLOOM performed as expected, we used the separate
query log that directly recorded DNS queries containing names
on the Booter blacklist against the detections made using
DNSBLOOM. Over the validation period, we observed 103
queries for Booter domains, both in the ground truth and in the
Bloom Filters. Moreover, we did not observe any false positives
when querying the Bloom Filters. That is: even though we
queried the Bloom Filters for the presence of queries for the
full Booter blacklist, the hits reported exactly matched the
ground truth. This is likely due to the very low false positive
probability of the hourly Bloom Filters (Figure 8).

To illustrate what more can be done with the query data from
the Bloom Filters, we mapped the Booter queries observed
during the validation window to specific types of connected
institutions6 on the SURFnet network. Figure 9 shows the
result of this mapping. It is clear that the majority of Booter
queries chiefly come from one type (A) of institution on the
network. Because of the sensitive nature of this information,
we have chosen not to identify specific sectors of SURFnet’s
constituency in this paper.

6E.g. universities, research institutes, vocational education, etc.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 103

100

10−1

10−2

10−3

10−4

10−5

10−6

Jun 30 Jul 02 Jul 04 Jul 06 Jul 08 Jul 10 Jul 12 Jul 14 Jul 16 Jul 18 Jul 20 Jul 22
Day

Ac
tu

al
 E

xp
ec

te
d

FP
 R

at
e

(L
og

10
)

Bloom Filter Actual Expected False Positive Rate over Time

Fig. 7. Actual expected false positive probability (pa) of 24h Bloom Filters

100

10−3

10−5

10−10

10−15

Jul 01 Jul 04 Jul 07 Jul 10 Jul 13 Jul 16 Jul 19 Jul 22
Hour

Ac
tu

al
 E

xp
ec

te
d

FP
 R

at
e

(L
og

10
)

Bloom Filter Actual Expected False Positive Rate over Time

Fig. 8. Actual expected false positive probability (pa) of hourly Bloom Filters

Scenario 3: National Detection Network — Our third,
and final scenario concerns the so-called National Detection
Network (NDN) [26]. This is a collaboration between the Dutch
National Cyber Security Centre and key players in important
sectors of Dutch society. The goal of NDN is sharing of
high-profile indicators-of-compromise. In the NDN, these IoCs
are shared through a Malware Information Sharing Platform
(MISP) [27]. Many of the IoCs in the MISP contain threats
that can be identified based on domain names. Up until now,
SURFnet has not been able to use this information, though,
as recording all DNS traffic to its resolvers simply to detect
potential IoCs from the NDN was deemed too privacy-invasive.
In this final scenario, we use DNSBLOOM to detect threats
shared through the NDN MISP. To also collect ground truth in
this scenario, we use a simple process. We first look for threats
that re-occur in multiple Bloom Filters (over multiple hours).
Then, we check the associated threat in the MISP, to see if
the threat is serious. If it is, we then start specific monitoring
for queries associated with this threat, as SURFnet’s privacy
policy allows such monitoring for network security purposes.

B. Results

We first focus on the performance of the Bloom Filters. Starting
with CPU workload, during the validation phase our prototype
collected data from three operational DNS resolvers and never
exceeded a single-core CPU load of 10%. Based on this, we
argue that it is perfectly feasible to run DNSBLOOM as a side
process directly on the DNS resolver. Recall that – just like
insertions – lookups can be performed in constant time O(k),
this means that we expect lookup performance to be similar
to insertion performance. Indeed, an unoptimised test run that
loads the Bloom filter from disk for every run takes an average
of 1.3 seconds to perform 230,000 lookups over 1,000 runs.

0

25

50

75

100

A B C D E

Type of Organization

N
u

m
b

e
r

o
f

B
o

o
te

r
Q

u
e

ry
 H

its

Fig. 9. Booter queries grouped per type of institution on SURFnet’s network

We also checked the actual false positive rate for Bloom
Filters aggregated per day. Recall our target p✏ was 10�3 for
daily aggregate filters. As Figure 7 shows, during the validation
the expected false positive rate for daily aggregate Bloom
Filters stayed well below this target. Given that the hourly
filters need to use the same parameters in order for aggregation
to be possible, the pa is much lower for the individual hourly
filters, as illustrated by Figure 8. This means that the estimation
process during the dry-run of the prototype performed well
and accurately suggested values for k and m. We do observe a
gradual decrease in the actual false positive probability pa over
time. This is likely due to the decrease in query volume, also
observed in Figure 5. While this implies a lower probability
of a false positive, thus increasing the reliability of lookups, a
pa that is far below the target can also lead to wasteful use of
storage space, as the filter size m could have been smaller.

Scenario 1 — To evaluate how the Bloom Filters performed
in the Booter scenario, we systematically checked every Bloom
Filter collected over the validation period for queries to domain
names on the Booter blacklist [25]. Then, to verify that
DNSBLOOM performed as expected, we used the separate
query log that directly recorded DNS queries containing names
on the Booter blacklist against the detections made using
DNSBLOOM. Over the validation period, we observed 103
queries for Booter domains, both in the ground truth and in the
Bloom Filters. Moreover, we did not observe any false positives
when querying the Bloom Filters. That is: even though we
queried the Bloom Filters for the presence of queries for the
full Booter blacklist, the hits reported exactly matched the
ground truth. This is likely due to the very low false positive
probability of the hourly Bloom Filters (Figure 8).

To illustrate what more can be done with the query data from
the Bloom Filters, we mapped the Booter queries observed
during the validation window to specific types of connected
institutions6 on the SURFnet network. Figure 9 shows the
result of this mapping. It is clear that the majority of Booter
queries chiefly come from one type (A) of institution on the
network. Because of the sensitive nature of this information,
we have chosen not to identify specific sectors of SURFnet’s
constituency in this paper.

6E.g. universities, research institutes, vocational education, etc.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 103

24h actual false positive rate (higher = better)

1h actual false positive rate (higher = better)

www.example.com

a029e8a9 c3faa9f8 cb745caa 8136503e 3a6dccaa c9f4c130 574c0e58 7235970e

(set of) hash function(s)

index #1 index #2 index #3 index #4 index #5 index #6 index #7 index #8

set bits to 1 in bit array using indices

Fig. 1. Mapping an element to a Bloom Filter

II. BACKGROUND

A. Bloom Filters

Bloom Filters – named after their inventor, B.H. Bloom –
were devised in the 1970s as a space-saving way to speed up
lookups in databases [4]. The essential goal of a Bloom Filter
is to function as a fail-fast lookup function that can quickly
determine that an element is not in a set. This is useful, for
example, in database indexes, where a Bloom Filter can quickly
determine whether an element is in an index.

A Bloom Filter is implemented as an array of m bits, initially
set to zero, which are set based on the output of k independent
hash functions. To add an element to the filter, an element
x is passed through each of the k hash functions, producing
k hash values h1(x). . .hk(x). Each of these hash values is
then treated as an index into the bit array m; this means that
each value hn(x) must likely be mapped to the space [0,m)
to become a valid index. Every bit at index h1(x). . .hk(x) is
then set to 1. Figure 1 shows an example of this process. In
the figure, rather than using k independent hash functions, a
SHA256 hash is used and split up into 8 separate offsets. This
is equivalent to using 8 independent hash functions as SHA256
is a cryptographic hash function with uniform output [5].

To perform a lookup in a Bloom Filter, the same process
is repeated. To look up element y, it is passed through the
hash functions to produce k hashes h1(y). . .hk(y). Then, the
values in the bit array m are checked based on the offsets
derived from each hash value hn(y). If any of the bit values
in m at an offset hn(y) is set to 0, then y is guaranteed not to
be in the set described by the Bloom Filter. If all of the bits
at offset h1(y). . .hk(y) are set to 1, then y is likely part of
the set described by the filter, although there is a probability
p✏ of a false positive. Figure 2 shows how element setting
(left) and lookups (right) work. For the purpose of exposition,
the reported example considers values k = 3 and m = 8;
the arrows indicate the indices in m that h1...3 map an input
value to. The figure shows three properties of Bloom Filters.
First, independent elements may hit the same bits in the filter
during insertion (purple field). Second, if an element is not
a member (top-right example), this is a true negative. Third,
false positives are caused by the element mapping by chance

1

0

0

1

1

0

1

1

www.example.com

www.example.org

true-negative.net

false-positive.org

set
elements

look up
elements

Fig. 2. Setting and looking up elements in a Bloom Filter

to indices in m that were previously set to 1 by the insertion
of one or more other elements.

The values for m and k are selected based on n, the expected
number of elements to be inserted into the Bloom Filter, and
on the desired false positive probability. In essence, there is a
trade-off between the size of the filter m and the false positive
probability p✏. For a given k,m, n, the false positive probability
has been shown in [6] to correspond to:

p✏ ⇡
⇣
1� e�

kn
m

⌘k
(1)

Furthermore, given a chosen m and an expected n, the
optimal number of hash functions that minimises p✏ is:

k =
m

n
ln 2 (2)

The actual false positive probability depends on the actual
number of bits set to 1 in the filter (s), and is computed as:

pa =
⇣ s

m

⌘k
(3)

Bloom Filters have a number of attractive properties, two
of which are relevant to this work. First, provided that two
Bloom Filters A and B use the same parameters (that is: the
same hash function(s), and the same values for k and m),
then the union of the two filter states A [B can trivially be
computed using the bit-wise OR operation. Second, update and
lookup operations on Bloom Filters execute in constant time,
in particular they are constant in k and have complexity O(k).

B. Collecting DNS queries

Monitoring of the DNS for security purposes has many
angles. In this paper, we focus on DNS traffic that is collected
near or on DNS resolvers. Figure 3 shows the vantage points
surrounding a DNS resolver. For this work, we focus on
data collected at vantage points A and B. Data collected at
vantage point C is typically of interest for large-scale passive
DNS (pDNS) deployments [7], which have far fewer privacy
concerns [8]. We consider pDNS as out of scope for this work.

To detect threats on a network, the simplest approach to
collecting DNS traffic is to perform packet captures on the
link on which incoming traffic from clients reaches the DNS
resolver (vantage point A). The vast majority of DNS traffic
is still plaintext, and such monitoring can be deployed using
standard software that is independent of the DNS resolver

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 99

National Detection Network
• NDN is managed by the Dutch National Cyber Security Centre (NCSC)

and is supposed to have "high value" indicators-of-compromise  
(from e.g. intelligence services)

• SURFnet could previously not monitor 
for threats reported in NDN because  
monitoring DNS traffic was considered  
too privacy sensitive

• With Bloom Filter approach it was now possible, and we found actual
compromises (e.g. WannaCry infected machine)

0

10

20

30

40

50

Jun 30 Jul 02 Jul 04 Jul 06 Jul 08 Jul 10 Jul 12 Jul 14 Jul 16 Jul 18 Jul 20 Jul 22
Time

N
um

be
r o

f t
hr

ea
ts

 o
cc

ur
re

d

Targeted Logging

• For the WannaCry infection, we could now
apply targeted logging

• Rather than monitoring everyone's queries,
only look for a specific query from a
specific subnet

• Much less invasive for users!

Other Benefits

• No personal data is stored, so data can be retained for longer periods 
→ Enables historical lookups (did this new threat occur in the past?)

• Bloom Filters could be shared with third parties, or you could allow
lookups from third parties 
→ Check for occurrence of threats in multiple networks 
→ Allow researchers access

• Properties of Bloom Filters are similar to HyperLogLog, so it is possible to
do cardinality estimates of the number of items (distinct queries)

Conclusions

• Prototype code has been released as open source 
https://github.com/SURFnet/honas

• SURFnet is planning to take this into production

• Future integration in NLnet Labs open source software to make this
approach more widely available and easy to deploy

• Proof that security and privacy can go hand in hand!

Thank you! Questions?

F nl.linkedin.com/in/rolandvanrijswijk

L @reseauxsansfil

 roland@nlnetlabs.nl

Paper available as open access (thanks to IFIP): 
http://dl.ifip.org/db/conf/im/im2019/189282.pdf

