Acknowledgment Delay Scaling

IETF 105 Montreal
Martin Thomson
Option A - No Scaling

Ack Delay expressed in units of microseconds

No scaling

+ Dead simple
- More bytes on the wire
- Change

Note: Adding a transport parameter later is complicated
Option B - Exponential Scaling

Ack Delay expressed in units of microseconds

Transport parameter for exponential scaling: \(x \ll \text{scale} \)

+ Can reduce bytes on the wire
+ Implemented with a shift
+ No change for existing implementations
- If native time is not in microseconds
 bad rounding, have to multiply/divide instead of shift
Option C - Multiplicative Scaling

Ack Delay expressed in units of microseconds

Transport parameter for multiplicative scaling: $x \times \text{scale}$

+ Can reduce bytes on the wire
+ Implemented with a divide (send) or multiple (recv)
- Most complex option (though still not that complex)
- Change
Alternative Decision Making Process

Opinion on this is split on the issue

However, no one holds a strong view, so RFC 3929!

Proposed process:
 Each hum for your **least preferred** option or options
 We keep the option with the weakest hum

Step 1: Agree to this process

Step 2: Vote

Step 3: Confirm decision on list
Vote!

A - No Scaling
B - Exponential Scaling
C - Multiplicative Scaling

Remember: hum loudest for your least preferred options