Preventing Version Ossification

Christian Huitema Kazuho Oku Eric Rescorla

High Level Problem

- The version is right there in the long header
- It's even an invariant

 So what happens if middleboxes reject long headers with versions != 0x00000001

Threat Modelling

- Lazy implementors
 - Don't really read the spec
 - Just aiming for a quick filter
 - Might check the version and the QUIC bit... (when there is no state?)
 - Probably won't do much else
- Hard-working implementors
 - Will read the spec
 - Really want to enforce
 - Willing to do an arbitrary amount of work
- First we need to decide who we are defending against!

Dealing with Lazy Implementors

- Just get the version number out of the header
- Example approaches:
 - \circ $\,$ Remove the version and use trial decryption $\,$
 - Replace the version with a masked version (e.g., H(V, Packet))
 - \circ $\;$ Have the server provide an "alternate VN" in an earlier connection
- All of these are easy to circumvent
 - Just trial decrypt with each potential version
 - We said that this was just for lazy implementors
- For hard-working implementors, you need the client and server to share secret information

Encrypt the Initial Somehow

- Might as well abandon the cleartext VN at this point
 - Trial decryption or separately encrypt the VN
 - This is largely a CPU/wire space tradeoff
 - Lots of variants
 - ESNI-style
 - Key delivered in connection 1 for subsequent connections
- What happens in cases where the secret isn't available?
 - Fall back to some fixed secret?
 - Probably not a real ossification risk for the ESNI-style version
 - Maybe more for the "subsequent connection" version
- Are we really just trying to make this opaque to the middlebox?
 - What are the deployment implications if middleboxes can't read Initial at all

Public Key Needed?

- ESNI uses a public key in the DNS
 - That's increased cost (CPU, wire space, etc.)
- Could we get away with a symmetric key?
 - Obviously this is tragically insecure against real attacker
 - But are implementors really going to scrape the DNS for this?

Mid-Connection Greasing

- Send long-header packets during the connection
- VNs can be random-appearing
 - Generated from a per-connection secret
- This maybe protects against lazy
 - \circ $\,$ As long as sites really do this $\,$
 - But won't work if sites first check for the existence of the 4-tuple in their state table
 - solution: do it upon intentional-migration (incl. SPA)?

A difficult situation

- Protecting against lazy implementors is comparatively easy
 - We have a bunch of options
 - Mostly easy
 - Require at least bending the invariants
- Protecting against hard-working implementors is going to be hard
 - And involves some tradeoffs
 - Almost certainly requires changing the invariants
- First need to decide what our objective is