RIFT-Python Open Source Implementation

Status Update, Lessons Learned, and Interop Testing

Version 1, 25-Jun-2019
RIFT Working Group, IETF 105, Montreal

Author: Bruno Rijsman, brunorijsman@gmail.com

Presenter: Tony Przygienda

mailto:brunorijsman@gmail.com

RIFT-Python open source implementation

e On GitHub:

nttps://github.com/brunorijsman/ritt-python

mplemented in Python

ntended to validate draft (reference implementation)

e Grew out of IETF 102 hackathon

* Not associated with any vendor
* The finish line is on the horizon (i.e. almost complete)

https://github.com/brunorijsman/rift-python

New since IETF 104

* Positive disaggregation implementation

* Flooding reduction implementation
* Security:
* Security implementation

* Security interop testing
* Security review report

What is still missing in RIFT-Python?

Plan to do: Currently no plan to do:

* Negative disaggregation * Label binding / segment routing
 East-west links * BFD

* Multi-neighbor state * Multicast

 Processing key-value TIEs * YANG data model

* Policy-guided prefixes

* Setting the overload bit

* Clock comparison

* Fabric bandwidth balancing
* More test cases

Help (GitHub pull requests) always welcome.

Positive Disaggregation

Why positive disaggregation

Spine-1-1 advertises default
route but cannot reach leaf-1-1

=

Broken link

Traffic from leaf-1-2 or leaf-1-3 to leaf-1-1 will be
blackholed it they follow the default route to spine-1-1

Positive disaggregation

Spine-1-2 and spine-1-3 do "positive disaggregation”:
(1) Detect that spine-1-1 has lost reachability to leaf-1-1
(2) Advertise specific (/32 and /128) routes for leaf-1-1

pod-1 o

spine-1-1 spine-1-2 spine-1-3

leaf-1-1 leaf-1-2 leaf-1-3

Leaf-1-2 and leaf-1-3 follow the more
specific route to leaf-1-1

Positive disaggregation implementation

* Detailed feature guide:
http://bit.ly/ritt-python-pos-disag-feature-guide

* No configuration needed; always enabled

« Summary ot algorithm:
* Detect blackhole
* Trigger advertising disaggregated prefixes (more specifics)
 Advertise disaggregated prefixes in south-TIEs
* Install disaggregated prefixes in route table

* Show commands to understand what's going on

http://bit.ly/rift-python-pos-disag-feature-guide

Positive disaggregation blackhole detection

spine-1-2> show same-level-nodes
e Hommmmmmm oo - e
Node North-bound | South-bound]| Missing
System ID | Adjacencies | Adjacencies|| South-bound
Adjacencies
e Hommmmmmm oo - e
101 1 1002
2 1003
3
4
e Hommmmmmm oo - Fommm e R +
103 1 1001
2 1002
3 1003
4
e Hommmmmmm oo - Fommm e R +

Positive disaggregation blackhole detection

spine-1-2> show interface veth-102a-1001b

Interface:

e e T L e T T +
| Interface Name | veth-102a-1001b

Neighbor is Partially Connected | True

Nodes Causing Partial Connectivity | 101

Positive disaggregation trigger more specifics

spine-1-2> show spf

South SPF Destinations:

fmmmmmemmmmemaee-- t--=--- T

| Destination | Cost | Predecessor

| | | System IDs

fmmmmmemmmmemaee-- t--=--- T

fmmmmmemmmmemaee-- t--=--- T
88.0.1.1/32 2 1001

fmmmmmemmmmemaee-- t--=--- T
88.0.2.1/32 2 1002

fmmmmmemmmmemaee-- t--=--- T $---m-- E +
88.0.3.1/32 2 1003

fmmmmmemmmmemaee-- t--=--- T $---m-- E +
88.1.2.1/32 1 102

fmmmmmemmmmemaee-- t--=--- T $---m-- E TR

Positive disaggregation flood more specifics

leaf-1-3> show tie-db

fmmmmmmmae- fmmmmmmmeaae- fmmmmmmmeemaaaa- Foootmmmmmmmmmmemeeemeeeemeaaeaa- +
| Direction | Originator | Type | | Contents

fmmmmmmmae- fmmmmmmmeaae-

fmmmmmmmae- € +.o. .t +
| South | 102 Pos-Dis-Prefix | | Pos-Dis-Prefix: 88.0.1.1/32 |
| | Metric: 2

fmmmmmmmae- tmmmmmmmaa- -

fmmmmmmmae- , ot +
| South | 103 Pos-Dis-Prefix | | Pos-Dis-Prefix: 88.0.1.1/32 |
| | Metric: 2

fmmmmmmmae- fmmmmmmmea o -

Positive disaggregation install more specitics

leaf-1-3> show spf
North SPF Destinations:
fmmmmmmmmmemmeeeaaao-a- t===---- T " S +.u.
| Destination | Cost | Predecessor | | IPv4 Next-hops |
| | | System IDs | | |
fmmmmmmmmmemmeeeaaao-a- t===---- T " S +
fmmmmmmmmmemmeeeaaao-a- t===---- T " S +.u.
0.0.0.0/0	2	101		veth-1003a-101c 99.13.14.14
		102		veth-1003b-102c 99.15.16.16
		103		veth-1003c-103c 99.17.18.18

+ + +---+

veth-1003b-102c 99.15.16.16 |
veth-1003c-103c 99.17.18.18 |

Positive disaggregation install more specitics

leaf-1-3> show route
IPv4 Routes:

T e e +
Prefix Owner Next-hops

©.0.0.0/0 North SPF veth-1003a-101c 99.13.14.14
veth-1003b-102c 99.15.16.16
veth-1003c-103c 99.17.18.18

veth-1003b-102c

veth-1003c-103c

Flooding Reduction

Why tlooding reduction?

Each super-spine node
receives N identical

super-1 super-2 super-3 uper-4 f f
N < . copies of each leaf TIE
/N S
7
pod 1 L — \
S)
P = e
| LA 25N [

leaf-1-1 leaf-1-2 leaf-1-3

Flooding reduction: prune the tlood topology

2 ’ Z/ANN
e S SSN
1 4
‘/J(T"’,I\ * Each leaf elects a subset of the parent spines

“ as flood repeaters
, _‘ « Make sure each grandparent super-spine
I/‘»é’] receives at least R redundant copies (but

typically much less than N copies)

: <7
‘/X""\s * Try to spread the flooding burden across all

spines

leaf-1-3 leaf-1-4)
* R < N to reduce flooding

* R > 1 for redundancy

Flooding reduction implementation

* Detailed feature guide:
http://bit.ly/tflooding-reduction-feature-guide

* Enabled by default

* Flood repeater election algorithm:

 RIFT-Python implements example algorithm from the draft
* Other implementations are free to choose different algorithms
 Routers can use different algorithms and still interoperate

* Show commands to understand what's going on

http://bit.ly/flooding-reduction-feature-guide

Flooding reduction parent list

leaf-1-14 show flooding-reduction
Parents:

mmmmmm e R TP R + R +
Interface	Parent	Parent	Grandparent		
Name	System ID	Interface		Repeater	
		Name			
mmmmmm e R TP + +					
veth-1001c-103a	103	spine-1-3:veth-103a-1001c			
mmmmmm e R TP + +					
veth-1001b-102a	102	spine-1-2:veth-102a-1001b			
mmmmmm e R TP + +					
veth-1001d-104a	104	spine-1-4:veth-104a-1001d			
mmmmmm e R TP + +					
veth-1001a-101a	101	spine-1-1:veth-101a-1001a			
mmmmmm e R TP + +

. continued on next slide ..

Provides details needed to understand the outcome of the flood repeater election algorithm.

Flooding reduction grandparent list

Grandparents:

PR
| Grandparent

| System ID

+ —+ —+ — + —F ——— +

________ i e e s e o]
Parent | Flood
Count | Repeater

| Adjacencies
________ e e s e o]
3 | 2
________ e e s o]
3 | 2
________ e e s o]
3 | 2
________ e e s o]
4 | 2
________ e e s o]

.. continued on next slide ..

ls each grandparent redundantly covered with redundancy factor R?

Flooding reduction interface list

Interfaces:

e e L e e e +---mmm - e e e e +
| Interface | Neighbor | Neighbor | Neighbor | Neighbor Neighbor is | This Node is

| Name | Interface | System ID | State | Direction | Flood Repeater | Flood Repeater
| | Name | | | for This Node | for Neighbor

e e L e e e +---mmm - e e +

| veth-1001a-101a | spine-1-1:veth-10l1a-1001a | 101 | THREE_WAY | North |

e e L e e e +---mmm - e e +

| veth-1001b-102a | spine-1-2:veth-102a-1001b | 102 | THREE_WAY | North |

e e L e e e +---mmm - e e +

| veth-1001c-103a | spine-1-3:veth-103a-1001c | 103 | THREE_WAY | North |

e e L e e e +---mmm - e e +

| veth-1001d-104a | spine-1-4:veth-104a-1001d | 104 | THREE_WAY | North |

e e L e e e +---mmm - e e +

Flood repeater status per interface (both north-bound and south-bound)

Flooding reduction configuration (optional)

* Enable or disable flooding reduction

* YAML file attribute flooding reduction
 Enabled by default

* Redundancy factor R (minimum grandparent coverage)
* YAML file attribute flooding reduction redundancy
* Default value 2

* Similarity tfactor S (to spread the flooding burden)
* YAML file attribute flooding reduction similarity
* Default value 2

Security

Security implementation

* Detailed feature guide:
http://bit.ly/ritt-python-security-teature-guide

« Outer keys per interface

*Inner keys (aka TIE origin keys) per router

* Multiple algorithms (SHA, HMAC-SHA) and key lengths
 Support for key roll-over using optional accept keys

» Extensive statistics and logging

http://bit.ly/rift-python-security-feature-guide

Security configuration example

authentication_keys:
- id: 1
algorithm: sha-256
secret: top-secret
- id: 2
algorithm: sha-256
secret: one-if-by-land
- id: 3
algorithm: sha-256
secret: two-if-by-water
- id: 4
algorithm: hmac-sha-256
secret: dont-tell-anyone

nodes:

- name: node2
active origin_authentication _key: 3
accept origin authentication _keys: [1, 4]
interfaces:

- name: ifl
active_authentication _key: 1
- name: if2

active authentication_key: 2
accept _authentication _keys: [1]

Note: Some keywords will like change to agreement to change terminology from “origin” to “inner”

Security statistics example

nodel> show interface ifl security

[.]
Security Statistics:

e e T T E TP +
| Description | value | Last Rate |
| | | Over Last 10 Changes |
e e T T E TP +
| Missing outer security envelope | @ Packets, @ Bytes | |
e e T T E TP +
| Zero outer key id not accepted | @ Packets, @ Bytes | |
e e T T E TP +
| Non-zero outer key id not accepted | @ Packets, @ Bytes | |
e e T T E TP +
| Incorrect outer fingerprint | @ Packets, @ Bytes | |
e e T T E TP +
| Missing TIE origin security envelope | @ Packets, @ Bytes | |
e e T T E TP +
| Zero TIE origin key id not accepted | @ Packets, @ Bytes | |
e e T T E TP +
| Non-empty outer fingerprint accepted | 109 Packets, 26138 Bytes | 2.99 Packets/Sec, 754.24 Bytes/Sec |
e e T T E TP +
| Non-empty origin fingerprint accepted | 7 Packets, 1682 Bytes | 3.04 Packets/Sec, 740.25 Bytes/Sec |
e e T T E TP +
| Empty outer fingerprint accepted | @ Packets, @ Bytes | |
e e T T E TP +
| Empty origin fingerprint accepted | @ Packets, @ Bytes | |
e e T T E TP +

Security interop testing

* RIFT-Python — RIFT-Juniper interop testing in July 2019
* Focus on security in this round of testing

Summary of lessons learned on next slide; details in published security review report

* Fully automated interop test suite

Uses automated RIFT-Python test suite, but replaces one router with Juniper

* Currently all interop tests are passing

RIFT-Python: GitHub tag ietf-105
RIFT-Juniper: pre-release version 0.11.0-20d78c8 (Linux Customer-image)

https://github.com/brunorijsman/rift-python/releases/tag/ietf-105

Security lessons learned

« Quter and inner fingerprints
* Very straightforward; got this to interoperate very quickly.
« Agreed on new consistent terminology (e.g. inner vs origin).
* Discussion on which fields the fingerprint should cover.

e Nonce reflection

* Most novel part of RIFT security; quite different from OSPF and ISIS. Most
lessons learned here.

« Covers both intra-session and inter-session replay attacks (no need for storing
boot-counts in non-volatile storage).

* Must be careful to not increase nonce too aggressively.

* Nonces have non-closable window of vulnerability of = 5 LIE intervals. But
second line of defense (FSM) is quite resilient to attacks.

* Draft was changed to use remote-nonce 0 in states Tway and 2way.

RIFT security review

*Very detailed RIFT security review report was published.

Based on draft review, implementation experience, and interop testing.

* First version (very out of date now)
Published 1-May-2019

http://bit.ly/ritt-security-review

» Second version
Will be published soon (ETA before the end of July, will announce on mailing list)

http://bit.ly/ritt-security-review-v2

http://bit.ly/rift-security-review
http://bit.ly/rift-security-review-v2

Questions?

