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Need of MOP-extension?
* Mode of Operation (MOP)

- Mandates primitives to be
supported by the 6LRs

- 3-bits in size
- Already exhausted
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MOP Extension

* MOPex Option

- New RPL Control message option
— Applicable only if base DIO-MOP = 0x7
- Final MOP = base MOP + MOPex
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Figure 1: Extended MOP Option
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Table 1: Final MOP calculation



Introducing Capabilities

* Capabilities indicate the set of features supported

— Could be mandatory or optional

* Specs defining new capability indicate whether it is
mandatory/optional

 Why MOP Is not sufficient?

- MOP mandates primitives needed by the routers

- Unlike MOP, Capabilities can be negotiated,
* using DIO/DAO/DAO-ACK



Capabillities (Caps) Option

* Defined as new RPL Control message option
— Can be part of DIO/DAO/ACK
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Use-case for Root

* Used by root

- In DIO: Inform all the 6LR/6LN of
root’s capabillities

- In DAO-ACK: Inform the 6LR/6LN
about accepted capabillities from
Root.
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Use-case for 6LR/6LN

Capabhilities handshake by 6LR in Non-Storing MOP

* Used by 6LR/6LN =
- |In DIO: Inform its child nodes | LN
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about its capabilities (for 6LRs)
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- In DAO: Inform parent/ancestors/ _
root of this 6LR’s capabilities
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Points to ponder

 CAPs can work with existing MOPs

- CAPs and MOPs are not dependent on each other

* Reducing CAPs control overhead

- Eliding mechanism similar to DIO Configuration
Option?

e How to reduce control overhead of MOPex?



Turnon-6LoRH, a use-case

Root
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 Can be handled without oo |
Chang|ng RFC 6550’) ... DIO(capEnable-6LORH=0)

— Note that this is not what Is
suggested in the draft, currently. -

Restarted with
new firmware
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Data traffic starts using 6LoRH/RFC8138

BLR1 6LR2




ACK

* Thanks to Georgious for the review

* Updates
— Clarification: what if MOPex option is absent but the
base MOP Is 7.

- Made explicit: CAP and MOPex are mutually exclusive
- Added detailed IANA considerations
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