MOP Extension & Capabillities

draft-rahul-roll-mop-ext-01
- Rahul, Pascal @ IETF105, Montreal

Need of MOP-extension?
* Mode of Operation (MOP)

- Mandates primitives to be
supported by the 6LRs

- 3-bits in size
- Already exhausted

P

Already in ’
Contention

A

v

MOP

3

4

(Unused)

Used for

No downward routes
Non-storing
Storing with no mcast
Storing with mcast

P2P-RPL

(AODV-RPL, P-DAO-NS, P-
DAO-Storing)

MOP Extension

* MOPex Option

- New RPL Control message option
— Applicable only if base DIO-MOP = 0x7
- Final MOP = base MOP + MOPex

0 1 2 3
01234567890123456789012345678901
+-t-F+—+—F—F—F-+-F+-F—F -+t -+ -+ -+ -+ -+ -+ -+ —+—+—+
| Type = TODO | Extended-MOP-value |
+—t—+—+—+—+-+—F-+-F+—-F+ -+ -+t —F—F—F—F—F—F—F—F—F—F—F+—-F+—F -+ -+ -+ —+—+-+

Figure 1: Extended MOP Option

o - +
| Base MOP |
tommm e — - +
|0 |
| 1 |
| |
| 6 |
|7 |
|7 |
|7 |
| |
+-——————— +

+
|

-+
|
|
|
|
|
|
|
|

-+

——————————— +
Final MOP |

——————————— +
|
|
|
|
|
|
|
|

----------- +

Table 1: Final MOP calculation

Introducing Capabilities

* Capabilities indicate the set of features supported

— Could be mandatory or optional

* Specs defining new capability indicate whether it is
mandatory/optional

 Why MOP Is not sufficient?

- MOP mandates primitives needed by the routers

- Unlike MOP, Capabilities can be negotiated,
* using DIO/DAO/DAO-ACK

Capabillities (Caps) Option

* Defined as new RPL Control message option
— Can be part of DIO/DAO/ACK

0 1 2 3
@123456?89@123456789@123456?896}1
—+—t—t—F—t- =ttt —d—t—F—t -ttt —F—t—t—t—t—F—F—F—F—F ==+ -

++

Use-case for Root

* Used by root

- In DIO: Inform all the 6LR/6LN of
root’s capabillities

- In DAO-ACK: Inform the 6LR/6LN
about accepted capabillities from
Root.

Root 6LR

 DIO{root_ca '
[T [....... _p:l }4

' DAO(nod
< (node_cap)

' DAO-ACK(node_cap) }:

Root 6LR

Use-case for 6LR/6LN

Capabhilities handshake by 6LR in Non-Storing MOP

* Used by 6LR/6LN =
- |In DIO: Inform its child nodes | LN

:J DAO(node_cap]

about its capabilities (for 6LRs)

Root 6LR1 6LR2

- In DAO: Inform parent/ancestors/ _
root of this 6LR’s capabilities

! DIOjroot |BLR cap) -

:’ DAO(node_cap)

]
i DAO-ACK(node_cap) _
I =

:_' DAO(node_cap)

]]
1 DAO-ACK(node_cap) 1

Root 6LR1 6LR2

Points to ponder

 CAPs can work with existing MOPs

- CAPs and MOPs are not dependent on each other

* Reducing CAPs control overhead

- Eliding mechanism similar to DIO Configuration
Option?

e How to reduce control overhead of MOPex?

Turnon-6LoRH, a use-case

Root

6LR1 6LR2

DIO{cap:Enable-6LORH=0)

 Can be handled without oo |
Chang|ng RFC 6550’) ... DIO(capEnable-6LORH=0)

— Note that this is not what Is
suggested in the draft, currently. -

Restarted with
new firmware

« |

DAO{cap:Supports-6LPRH=T)

__DAO(cap:Supports8138=1)

DIO{cap:Enable-6L0)

H=T)

DIO{cap:Enable-6L ORH=T) }l

Data traffic starts using 6LoRH/RFC8138

BLR1 6LR2

ACK

* Thanks to Georgious for the review

* Updates
— Clarification: what if MOPex option is absent but the
base MOP Is 7.

- Made explicit: CAP and MOPex are mutually exclusive
- Added detailed IANA considerations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

