Network Automation Evolution

IETF #105
Montreal, July 2019
Josep-Lluis Ferrer, Raymond Cheh, Dean Bogdanovic
Volta Networks
New Service Edge Changes Routing

- **100s**
 - Core
 - Edge
 - PoP

- **1,000s**
 - Cross-Haul
 - Co

- **10,000s**
 - Disaggregated
 - Cell Site
 - Gateway
 - Last Mile

Locations with routing
Traditional Network Management

- Networks are simply considered as collection of switches and routers.
- This practice leads to more complexity, due to increased number of systems that must be managed directly. Non-scalable.
- Lack of programmability, forced to think in terms of device configuration.
- Lack of agility on delivering new features. Locked to equipment provider release cycles.
- Tools and protocols: CLI, SSH, SNMP, custom tools.
• **Network automation** is a methodology in which software automatically configures, provisions, manages and tests network devices.

• *(with minimal or no human intervention).*

• It can be achieved by means of **programmatic** capabilities, i.e., via **APIs** which define the supported remote calls.
API Based Management Approach

- All network elements could be configured using the same tools and abstractions
- Software based workflow to increase agility
- Network operator could focus on build new services
- Network engineers could build custom services with common set of tools
- Tools and protocols: YANG, NETCONF, Openconfig, gRPC, vendor SDKs, open source libraries
API Definition Requirements

- **Data model**: Define the data consumed by the methods (e.g. YANG)
- **Operations**: Define the operations that can be performed via API.
- **Serialization**: The encoding, how data is sent over the wire (examples JSON, XML, protobuf)
- **Transport**: The underlaying protocol to consume the API calls. E.g., HTTP, HTTP/2, QUIC, SSH…
Data Model

• YANG (IETF) adopted as main data-modeling language for networking devices, providing both configuration and operational state (including statistics)

• Defines data hierarchy as tree structure

• Specifies data types, restrictions (read, read+write), valid values, defaults

• Can be converted to any encoding format: JSON, XML

• **Open** models (vendor neutral): IETF, Openconfig

• Vendor models
Transport Protocols

• NETCONF (SSH)
 – RPCs (XML/JSON): GET-CONFIG, EDIT-CONFIG, COMMIT,…

• RESTCONF (HTTP/S)
 – RPCs (XML/JSON): GET, POST, DELETE, PUT

• gRPC (HTTP/2)
 – RPC: Req/Rsp, streaming, bidirectional, …
 – → De-facto standard for telemetry
Network Device Configuration And Management APIs

YANG data-model
- configuration
- operational

Device resources and network functions
- interfaces
- ACL
- VRF

NETCONF
RESTCONF
gRPC
OpenConfig: Device Models*

*http://www.openconfig.net/projects/models/
OpenConfig: gRPC Interfaces

gRIBI
Routing Information Base Interface

gNMI
Network Management Interface

gNOI
Network Operations Interface

RIB
Oper State

Configuration

Operational Commands

gNMI Figure source: https://datatracker.ietf.org/meeting/101/materials/slides-101-rtgw-sessa-grpc-services-on-network-devices-00
service gNMI {
 rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);
 rpc Get(GetRequest) returns (GetResponse);
 rpc Set(SetRequest) returns (SetResponse);
 rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);
}

gNMI Telemetry

message Subscription {
 Path path = 1;
 SubscriptionMode mode = 2;
 uint64 sample_interval = 3;
 bool suppress_redundant = 4;
 uint64 heartbeat_interval = 5;
}

message Path {
 repeated string element = 1 [deprecated=true];
 string origin = 2;
 repeated PathElem elem = 3;
 string target = 4;
}

message PathElem {
 string name = 1;
 map<string, string> key = 2;
}

- SubscribeRequest message allows multiple subscriptions via SubscriptionList message.
- Each SubscriptionList includes multiple Subscription messages
- Modes
 - STREAM: Sends value on change
 - ONCE: Only sends 1 update
 - POLL: Actively poll for the value
- Path and PathElem represent serialization of XPATHs telemetry clients can be subscribed —> XPATH is text based
- gNMI encoding (TypedValue):
 - JSON
 - BYTES
 - PROTO
 - ASCII
 - JSON_IETF
 - Native (int, bool,...)
Adding Value To The Networks: Do We Have The Right Tools?

Network Service is a collection of network functions and device resources combined into a business and/or technology logic distributed among different network elements.

Network Function describes the configuration parameters of a specific device technology or feature and exposes via API (ACLs, routing protocols, policies,...)
Services Models

• IETF also defines service level YANG models
 – L2VPN (RFC8466) and L3VPN (RFC8299)
• Openconfig only defines models at device level
• Network operators and architects still have to create their own tools to create and manage services (and create value!!)
• Could we use any re-usable pattern to design and automate networking services?
Network Service Example

Metro Ethernet Service ("Business VPN Gold")

L3 VPN

iBGP MPLS Interface Routing options

Business Service
(Customer Facing Service)
Network operator owned

Network Service
Collection of network functions and assets combined into a tech logic
(Resource Facing Service)

Network Functions
Network Service Automation

Functions useful to manage service in high-level

- Troubleshooting
- Operations
- Provisioning
- Operator/Developer automates network behaviors
Traditional Approach: Network Service Orchestration (NSO)

Centralized Network Service Orchestration (NSO)

Service Provisioning

Service monitoring

Alarms

Network operator

API Device

API Device

API Device

Services DB
Network Service As SDN Application

Foundations of Networking

Network automation

Network developer
Network Service As SDN network Application (II)
Network Service As SDN network Application (III)

- Device management platform (Distributed)
- Streaming Events Bus
- southbound
- Network Service Instance #i
- Service logic based on events
- Configuration actions
- Monitoring of device resources and network functions
- Service Schema & state
- API

Device
Device
Device
Network Service As SDN network Application (IV)