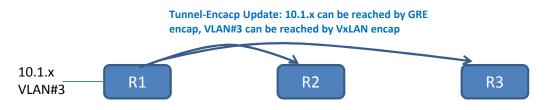
Network to Cloud DC (Net2Cloud) Update IETF 105

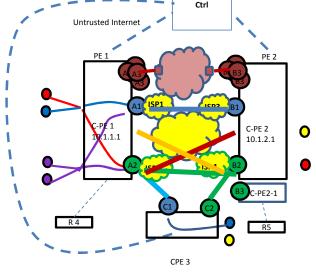
draft-ietf-net2cloud-problem-statement-03 draft-ietf-net2cloud-gap-analysis-02

> Linda.Dunbar@futurewei.com Andy Mails (<u>agmalis@gmail.com</u>) <u>Christianjacquenet@orange.com</u> <u>Mehmet.toy@verizon.com</u>

Problem Statement Update Since IETF 104

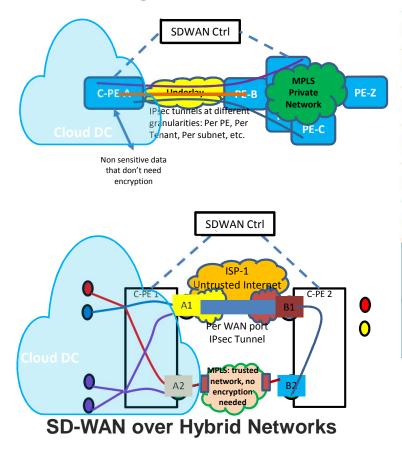

- Add a section to explain The role of SD-WAN techniques in Cloud DC connectivity (Section 1.2)
 - Focus on the issues associated with connecting enterprises to their workloads/applications instantiated in multiple third-party data centers (a.k.a. Cloud DCs)
- Add more details to VPC , Internet GW, Virtual GW, Transit GW, and Direct Connect
 - VPC (Virtual Private Cloud) is a virtual network dedicated to one client account. It is logically isolated from other virtual networks in a Cloud DC. Each client can launch his/her desired resources, such as compute, storage, or network functions into his/her VPC. Most Cloud operators' VPCs only support private addresses, some support IPv4 only, others support IPv4/IPv6 dual stack.

- Add details to multiple approaches to connect workloads in Cloud DCs, and associated problems
 - Cloud DCs do not expose their internal networks: can advertise all the routes instantiated in the Cloud DCs (even including the routes physically located to different sites). Result in inefficient routing and non visibility

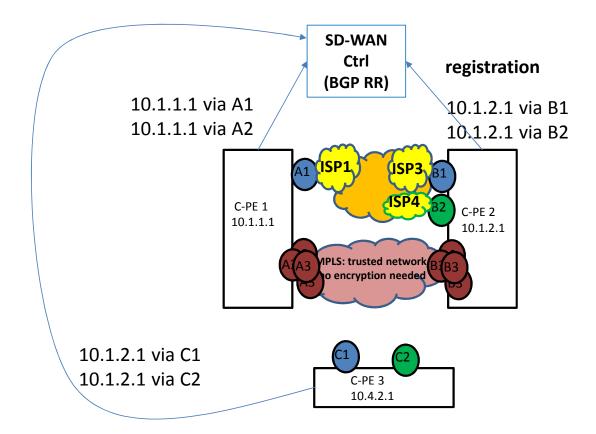

Gap analysis update since IETF 104 Tunnel-Encap

Client routes distribution, just like EVPN or L3VPN using [Tunnel-Encap] to advertise all
possible tunnels for clients routes.

• But Tunnel-Encap doesn't address the WAN ports properties:



- Each SDWAN edge node needs to advertise its WAN ports properties via the secure channel with the RR.
- RR then propagates the received WAN ports properties to the authorized peers based on appropriate policies.
- SDWAN edges pairwise secure channel establishment **BEFORE client routes are** attached, such as IPsec parameters negotiation, public key exchange, etc.


Gap Analysis Update since IETF 104: SECURE-EVPN

Homogeneous SD-WAN:

+-+-+-+-+-+-+-+ Functionality	+-+-+-+-+-+-+ EVPN	+-+-+-+-+-+-+ IP-VPN	+-+-+-+-+-+ MVPN	VPLS	SDWAN
per PE	IPv4/v6 route	IPv4/v6 route	IPv4/v6 rte	IPv4/v6	Y
per tenant	IMET (or new)	lpbk (or new)	I-PMSI	N/A	Y
per subnet	IMET	N/A	N/A	VPLS AD	Y
per IP	EVPN RT2/RT5	VPN IP rt	*,G or S,G	N/A	Υ
per MAC	EVPN RT2	N/A	N/A	N/A	Υ
Per WAN Port	N/A	N/A	N/A	N/A	Property
Cluster Of PEs					Y

WAN port property dynamic changes and propagations?

• A1/A2/A3/B1/B2/B3 WAN ports can be from different network providers.

- Each PE advertise its WAN ports to Controller, which then propagate the advertisements to authorized peers.
- PEs Loopback addresses & routes attached are not visible to some ISPs

A1/A2/A3/B1/B2/B3 are logical address that can be applied to a set of ports

Next Step

Request for WGLC