Privacy Issues in Identifier Locator Separation Protocols

July, IETF 105
SAAG Meeting
Dirk von Hugo
Behcet Sarikaya
OUTLINE

• Identifier Locator Separation (idloc)
• Privacy Problem in IdLoc (pidloc)
• Use Cases
• Solution Space Analysis
Routing based on Id-Loc Separation

• End-to-end routing based on ‘traditional IP address approach’ may become inefficient and complex in case of e.g.
 – extreme mobility, multi-homing/multi-path, virtual vs. physical entities, ...

• Identifier-Locator Separation (Id-Loc) may be advantageous here

• Multiple Protocols using Id-Loc proposed:
 – e.g. LISP (RFC 6833), ILNP (RFC 6740), ILA (draft-herbert-intarea-ila), ...

• Several purposes:
 – reduce burden on IP(v6) address semantics, i.e. virtual machines
 – demand for new network architecture for seamless mobility, i.e. mapping system vs routing tables
 – Carry source-destination identifier instead of IP address in packet header

• Application areas include:
 – Industrial IoT
 – Vehicular Networks
 – 5G

ILA: Identifier Locator Addressing
ILNP: Identifier Locator Network Protocol
LISP: Locator/ID Separation Protocol
Routing based on Id-Loc Separation

• LISP (RFC 6833) as network-based approach
 – uses mapping and encapsulation of packets
 – proposes a specific LISP architecture providing a level of indirection for routing and addressing
 – specific ingress/egress routers at LISP domain boundaries
 – to obtain mappings used for encapsulation operation, routers query mapping system - only when necessary (e.g., at beginning of a new flow transmission)
 – Drafts rfc6830/6833-bis as proposed standards under IESG evaluation
 • https://www.lispers.net/ and https://datatracker.ietf.org/wg/lisp/
Routing based on Id-Loc Separation

- ILNP (RFC 6740) as host-based approach
 - 64 bit Locator is topologically significant and used only for routing and forwarding
 - 64 bit Node Identifier is not topologically significant and names a logical/virtual/physical node
 - enables mobility using mechanisms only deployed in end-systems not requiring any router changes
 - Uses DNS as mapping system
 - See also e.g. #102 tutorial
 - https://ilnp.cs.st-andrews.ac.uk/
Routing based on Id-Loc Separation

- ILA (draft-herbert-intarea-ila) using address transformation
 - proposes to split an IPv6 address identifier (lower address bits) and locator (higher address bits) portions à 64-bit length each
 - locator part determined dynamically from mapping table maintaining associations between location-independent identifiers and topologically significant locators
 - ILA is currently deployed in commercially available cloud systems such as Facebook and Google which are Layer 3 based.
 - A kernel implementation of ILA is available in Linux distribution.
 - ILA does not require any transport layer (UDP/TCP) changes.
 - See also #101 BoF ILA
Id-Loc Separation protocols - relation to security area

- Why privacy?
 - Source and destination identifiers at IP packet header as main issue for privacy
- What’s the threat?
 - Ids are carried in clear so exposure to 3rd parties to relate Ids to geo location
 - Multiple independent paths’ usage may increase location privacy attack risk
- What’s been tried in the past or now?
 - No solution yet but some proposed solutions like LISP CP, ILA FAST/AMS
- Why didn’t some of those get deployed/what are existing shortcomings?
 - Because Idloc protocols not yet deployed extensively
 - Privacy issue need to be addressed
 - A new architecture needs to be introduced
 - A more convenient mapping system is required
- What’s potential future work/pidloc ML/etc.?
 - BoF after developing Problem Statement and Requirements drafts from identified Use cases and subsequent WG formation to work on solution space
Privacy issues in ID/loc separation systems

• Check: https://tools.ietf.org/html/draft-nordmark-id-loc-privacy
 – Published just before IETF 102 in Montreal

• Pidloc non-WG discussion list was formed based on problems discussed in this draft right after IETF 102

• We have 60+ people on the list, we solicit more, please subscribe at https://www.ietf.org/mailman/listinfo/pidloc

• Some issues have been discussed in the past teleconferences and at least one solution draft has been submitted (Slide 11)
The Problem

• **Location Privacy** related to geographic location of device reachable at some IP address coupled identifier

• **Movement Privacy** derived from changing locator(s) of point of attachment at different times even without knowing particular locators and by possible correlation with other information (e.g., security cameras) to create a binding between identifier and personal device

• Strong privacy in address choice e.g. by creating frequently changing random values can present a **scaling** problem to the mapping in large networks
Use Cases

• **Optimized Routing** In an operator network the mapping system can provide access control so that only those trusted devices can access the mappings.

• **Business Assets** in Industrial IoT, share the ID/ locator binding within the company but not with 3rd parties

• **Distributed (cloud) Data center** in a restricted domain (walled garden) intruders may be prevented

• **Mobility and Global reach** in a cross-domain and -operator fashion would demand for explicit privacy preservation

• **NFV (Network Function Virtualization)** requires to find the optimum specific NF instance from a generalized NF name
Solution Space

• So far only one solution attempt

• Tom Herbert published this draft on Encoding Routing in Firewall and Service Tickets

• The architecture is adopted to 3GPP network

• Defines ILA locator encoding in a Firewall and Service Ticket (FAST) of 64 bits

• Locators of 128 bits like in LISP can also be defined
AMS draft

• Address Management System (https://tools.ietf.org/html/draft-herbert-intarea-ams-01) draft by Tom Herbert

• AMS routers have three primary functions:
 – Serving mapping information
 – Overlay forwarding
 – Sending redirects

• Proposes alternative to requiring a mapping lookup on each packet by encoding mapping information in specific FAST packets themselves

• Discusses interaction between address mapping system and privacy in Internet addressing in terms of criteria for and facilitation of strong privacy
LISP Control-Plane draft

• draft-ietf-lisp-rfc6833bis (Locator/ID Separation Protocol (LISP) Control-Plane) states that LISP Routers are not dependent on details of mapping database systems

• Can we think of applicability also to simplified approaches?
Next Steps

• In pidloc, we propose that before we find ways to protect privacy and avoid issues of location and movement privacy, first we need to work on a general Problem Statement and Requirements from identified Use cases

• Pidloc proposes exploring minimizing the privacy implication as a possible approach in Industrial IoT use case, i.e., one can explore limiting to which peers and when the ID/ locator binding are exposed

• Possible solutions like LISP CP and AMS/FAST should be adaptable to a generally applicable privacy preserving Id-Loc split protocol to be developed in the proposed WG and eventually apply to LISP, ILA, ILNP, and others.
Questions

• Subscribe to pidloc ML
 – https://www.ietf.org/mailman/listinfo/pidloc

• Review drafts
 – Requirements to Secure End to End Privacy in IdLoc Systems (draft-xyz-pidloc-reqs-00.txt)
 – Problem Statement for Secure End to End Privacy in IdLoc Systems (draft-xyz-pidloc-ps-02.txt)

• Questions?