Hackathon, v105

e Bill Munyan
 (Carl-Heinz Genzel (remotely)
 Henk approves of this hackathon

Objectives

* Determine a data model representing “what to collect”

* Determine a data model representing “what was collected”
* Implement a simple collector

* Do cool things with XMPP

* Use XMPP’s eXtensible <ig> stanza to orchestrate collection

e Use various XMPP features (IQ’s and PubSub) to push collected information between
XMPP entities

* Do cool things with concise map
* Translate collected information to MAP CBOR data
e Publish translated CBOR data to MAP
e Extract CBOR data from MAP and reconstruct collected XML data

Data Model(s)

* Prior to hackathon, Bill worked on some (quick & dirty) modifications
to OVAL
e Current OVAL structure couples collection and evaluation
* There’s no way to indicate collection only

* Redefined some namespaces, and created a new “OVAL collections”
schema
* Allows for OVAL XML to only specify collection activities
* The <oval_objects> element

* Reduced scope (for this hackathon) to just the core and platform-independent
schemas

Collection Example

<?xml version="1.0" encoding="UTF-8"?>
<oval objects collection-id="oval:org.cisecurity:collection:9999"
xmlns="http://oval.cisecurity.org/XMLSchema/oval-collections-6"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ind-def="http://oval.cisecurity.org/XMLSchema/oval-definitions-6#independent"
xmlns:oval="http://oval.cisecurity.org/XMLSchema/oval-common-6"
xmlns:oval-coll="http://oval.cisecurity.org/XMLSchema/oval-collections-6"
xmlns:ind-coll="http://oval.cisecurity.org/XMLSchema/oval-collections-6#independent"
xsi:schemaLocation="http://oval.cisecurity.org/XMLSchema/oval-collections-6 oval-collections-schema.xsd http://oval.cisecurity.org/Xmy
<generator>
<oval:product name>QOVAL Collections Generator</oval:product name>
<oval:product version>0.0.1</oval:product version>
<oval:schema version>6.0.0</oval:schema version>
<oval:timestamp>2019-07-20T10:41:00-05:00</oval:timestamp>
</generator>
<objects>
<ind-coll:family object id="oval:org.cisecurity:obj:1" version="1"
comment="This family object represents the family that the operating system belongs to."/>

<ind-coll:environmentvariable object id="oval:org.cisecurity:obj:2" version="1" comment="The COMPUTERNAME environment variable">
<ind-coll:name>COMPUTERNAME</ind-coll:name>
</ind-coll:environmentvariable object>
</objects>
</oval objects>

System Characteristics Example

<oval system characteristics xmlns="http://oval.cisecurity.org/XMLSchema/oval-system-characteristics-6" collection-ref="oval:org.cisecurity:collection:9999">
<generator>

<product name xmlns="http://oval.cisecurity.org/XMLSchema/oval-common-6">OVAL XMPP</product name>
<product version xmlns="http://oval.cisecurity.org/XMLSchema/oval-common-6">0.0.1</product version>

<schema version xmlns="http://oval.cisecurity.org/XMLSchema/oval-common-6">6.0.0</schema version>
<timestamp xmlns="http://oval.cisecurity.org/XMLSchema/oval-common-6">2019-07-21T16:39:52.451-04:00</timestamp>
</generator>

<system_info>
<os_name>Windows 10</0s_name>
<os_version>10.0</os_version>
<architecture>amd64</architecture>
<primary host name>CIS-CAT-DEV</primary host name>
<interfaces/>

</system_info>

<collected objects>

<collected object id="oval:org.cisecurity:obj:1" version="1" comment="This family object represents the family that the operating system belongs to." flag="complete">
<reference item ref="1"/>
</collected object>
<collected object id="oval:org.cisecurity:obj:2" version="1" comment="The HOME environment variable" flag="complete">
<reference item ref="2"/>
</collected object>
</collected objects>
<system data>
<family item xmlns="http://oval.cisecurity.org/XMLSchema/oval-system-characteristics-6#independent" id="1">
<family datatype="string">windows</family>
</family item>
<environmentvariable item xmlns="http://oval.cisecurity.org/XMLSchema/oval-system-characteristics-6#independent" id="2">

<name>COMPUTERNAME</name>
<value>CIS-CAT-DEV</value>
</environmentvariable item>
</system data>
</oval system characteristics>

Who did what?

* Bill was again joined (remotely from Germany) by Carl-Heinz
* CHis a MAP ninja and a java wizard

* Bill
* Create/Enable XMPP extensions to handle collection requests (OVAL objects) and collection
results (OVAL system characteristics)
* Trigger collection through XMPP IQ stanzas
e Collect Items at an endpoint via OVAL collection implementation
* Push collected OVAL system characteristics to CH (2 methods)

* Publish OVAL system characteristics to XMPP pub/sub topic
* Enable OVAL system characteristics to be sent directly to CH via XMPP IQ stanzas

e Carl-Heinz
* Receive collected system characteristics via XMPP adapter (pub/sub, <ig>, <message>)
Translate OVAL system characteristics to MAP CBOR data
Publish translated CBOR data to MAP
Search via MAP Client for Data
Translate Data from MAP to XML and see if it is the same as original OVAL Results

Who did what? Bill Edition

* Create/Enable XMPP extensions to handle collection requests (OVAL
objects) and collection results (OVAL system characteristics)

* Trigger collection through XMPP 1Q stanzas
* Collect Items at an endpoint via OVAL collection implementation

* Push collected OVAL system characteristics to CH (3 methods)
1. Publish OVAL system characteristics to XMPP pub/sub topic
2. Enable OVAL system characteristics to be sent directly to CH via XMPP <ig> stanzas

3. Enable OVAL system characteristics to be sent directly to CH via XMPP <message>
stanzas

Workflow 1: Pub/Sub

Workflow 1: XMPP Pub/Sub

Fommmmmm e - Fomm e -
| Orchestrator 4----------cmmmmie > XMPP Pub/Sub Topic |
Fommmmmmm- oo - Orchestrator publishes e it e -

system characteristics
XMPP Adapter receives

|
IQ request containing |
| subscription event containing
|
|

<oval _objects>
system characteristics

XMPP Adapter is e T +
oo Fommm oo -

IQ response containing

I

I

I

I

I

I

| subscribed to topic | XMPP Adapter |
I

I

| <oval system characteristics>
I

|

|
|
|
- L + MAP Client translates
$--------- $------- + | MAP Client | system characteristics XML
| Collector e $ommm e + to CBOR and publishes to
Fommmmmmmm oo + | the MAP Server
|
|
- Vommmmm oo +
| MAP Server

Workflow 2: Direct XMPP <ig>

Workflow 2: Direct XMPP Communication

fommm e - Frmmm e -
| Orchestrator 4---------mmmmmmm e > XMPP Adapter |
e e + Orchestrator sends IQ et e b -
| containing system characteristics
IQ request containing | directly to XMPP Adapter

<oval objects>

|
|
| |
| fommmmm e e + MAP Client translates
| | MAP Client | system characteristics XML
| fommmmmmen e + to CBOR and publishes to
| | the MAP Server
| |
| IQ response containing |
| <oval system characteristics» et EEEEEEEEE -
| | MAP Server
| oo -
$ommmmm e fommm - -
| Collector |

Workflow 3: Direct XMPP using Message stanzas

IQ request containing
<oval_objects>

|

I

|

| IQ response containing

| <oval system characteristics>
|
|

e F--mmm - - e
Collector e > XMPP Adapter
e - e e

Collector sends <message> |
stanza containing system |

characteristics directly +--------- Vo-mmmm - -
to XMPP Adapter | MAP Client
e it $--mmmm -
|
|
|
e it L
| MAP Server
et

Workflow 3: Direct XMPP <message>

+ MAP Client translates

| system characteristics XML

+ to CBOR and publishes to
the MAP Server

Who did what? Carl-Heinz Edition

* Subscribe to XMPP pub/sub topic to receive collected system
characteristics

* Translate OVAL system characteristics to MAP CBOR data
* Publish translated CBOR data to MAP
e Search via MAP Client for Data

* Translate Data from MAP to XML and see if it is the same as original
OVAL Results

Storage: Concise Map

IETF 185 Hackathon
Concise MAP implementation for collected System Characteristics

e e +
Assoc.Generator (Metadata) | | Current Value (Metadata)
e e e e + System(Identifier) | Value: CIS-CAT-DEV
| | Hostname: host.abc.com. 4--------mmmmmm e -
| | Architecture: x86_64 | |
| | | Fommmmm e e +
| Hmmmmm e Fommmmm e + | |
| | | Environment Variable (Identifier) |
Hmmm s Fomm e + | | Name: COMPUTERNAME |
| | | 1Installed 0S (Metadata) |
| Generator (Identifier) | | Version: 02020220 Fomm e Hmmmm e +
| ProductName: Something | | Arch: x86_64 + Gibbon |
| ProductVersion: 6 | | Name: Ubuntu
| | | Reference (Metadata) |
e e T - Hommmm - Hommmmmm e - | e TR T -
		I				
0S (Identifier)	e R R -	Identifier (Identifier)				
Family: Linux		[ID: oval:org.cisecurity:collection:9999		
		Identifier (Identifier)		Identifier (Identifier)		Type: Collection
e Hommmmmm e +	ID: 1 [ID: 2					
	Type: Item		Type: Item	e Fommmmm e Homm e m e -		
e +	I I I					
Reference (Metadata) Fomm e Hmmmmm I Fmmmmmmm e +						
		I				
T +						
Reference (Metadata)						
I						
Reference (Metadata)						
et e -

Translation to CBOR

This is the CBOR data in pretty printing aka. human readable format.

"1": [21911, 0, 9, 1] is a name of the data structure surrounded by {} in this case for the publish operation.
1204 Means a list of metadata.

1203 Means a list of one or two (in case of a link between) identifiers.

Identifiers usually have an attribute numbered 3, which is the payload of the identifier.

Metadata usually have an attribute numbered 7, which is the payload of a metadata.

Refer to the CDDL files in the SACM repository for further explanations about the numbers.

{
1*: [21911, ©, 9, 1], // Name for the publish operation
"2": "26be0140-6cd5-4436-9714-091al7a@@ac9”,
3=
{
"1204": [
{
“1": [65535, 65535, 1, @],
"2": 1,
“3": @
}
]) o o . o o
Y “1203” Identifies a link between System Identifier and Generator
{
i [65535, 65535, 1, @],
"2%: "7,
“3": {
"0": "CIS-CAT-DEV", .o
“1%: *amd64" System ldentifier
}
o
{
“1": [65535, 65535, 2, @],
"2": v,

": "9.0.1",
“: ["null:6.0.0"],
": "2019-07-21T15:46:53.575Z"

Generator

{
"@": "OVAL XMPP",
1

2

Things we Learned

 We were able to move data between components using 3 methods

supported by XMPP

e Publish/Subscribe
* Direct messaging via <ig> stanzas containing custom payload

* Direct messaging via <message> stanzas containing custom payload
e Carl-Heinz was also able to query the MAP data and reconstruct the OVAL

system characteristics from it.
* May enable downstream operations if they require the XML data

* Right now there's no way to configure a MAP client with the things you
want to know. There's only pre-configured clients.
* Meaning, specific CDDL and implementation was required before the MAP client

could translate the system characteristics.
* This could fall under capability discovery, i.e. “what specific system characteristics

can my MAP client handle?”

What's next?
* Keep Going!

* As we define operations, start to include them as part of the architecture
draft and build a library of data models

e Can we define a core set of operations, and build upon them with extension
points?
e (use XMPP as an example — there’s only 3 core operations, and XEPs build upon that)
* Can we define an “architecture core” and enable “SACM extension protocols”?

e Continue to refine the OVAL collection models
* More platform-specific schema migrations
* Propose to SCAP 2.0 working groups (endpoint data collection, OVAL)

* Build more collection capabilities based on the models
 Evaluation (or other downstream) operations

Thanks

* BIG THANKS to Carl-Heinz for his contributions to the Hackathon
* Especially for staying awake into the wee hours of the morning

* Also thanks to Henk for enabling collaboration between Bill and Carl-
Heinz, and getting us going on various calls before Hackathon

