SRv6 OAM

Zafar Ali - Cisco Systems (zali@cisco.com) - Presenter
  Clarence Filsfils - Cisco Systems (cfilsfil@cisco.com)
Nagendra Kumar - Cisco Systems (naikumar@cisco.com)
Carlos Pignataro – Cisco Systems (cpignata@cisco.com)
Rakesh Gandhi - Cisco Systems (rgandhi@cisco.com)
Frank Brockners – Cisco Systems (fbrockne@cisco.com)
  John Leddy - Individual (john@leddy.net)
Satoru Matsushima – Softbank (satoru.matsushima@g.softbank.co.jp)
  Robert Raszuk Bloomberg LP (robert@raszuk.net)
  Daniel Voyer - Bell Canada (daniel.voyer@bell.ca)
Gaurav Dawra – LinkedIn (gdawra.ietf@gmail.com)
Bart Peirens – Proximus (bart.peirens@proximus.com)
Mach Chen – Huawei (mach.chen@huawei.com)
  Faisal Iqbal – Individual (faisal.ietf@gmail.com)
Gaurav Naik – Drexel University (gn@drexel.edu)
History of the Draft

• draft-ali-6man-srv6-oam-00 was published in July 2017.
  – Main draft describing use-cases including classic ping and traceroute in SRv6 networks.

• draft-ali-6man-srv6-oam-01 was published in October 2017.
  – Revision with editorial changes.

• draft-ali-spring-srv6-oam-00.txt was published in Feb 2018.
  – Added SRv6 ping and traceroute.
  – Added SRv6 segment-by-segment ping and overlay traceroute.

• draft-ali-spring-srv6-oam-01.txt was published in July 2018.
  – Moved O-bit from SRH draft to this draft.
  – Presented in 6man at IETF102.

• draft-ali-spring-srv6-oam-02.txt was published in October 2018.
  – Presented at IETF103 (6man and Spring).

• draft-ali-6man-spring-srv6-oam-00.txt
  – Presented at IETF104 (6man) in March 2018

• Addressed all comments received in the latest revision.
Deployment Status

• Deployed in a nation-wide network at Softbank.
• Deployed in a multi-city network at China Telecom.
• Deployed in a nationwide SRv6 network at Iliad.
• Additional deployments are in preparation.

Source: draft-matsushima-spring-srv6-deployment-status
Implementation and Interoperability Status

• Supported by at least 10 platforms with shipping implementation:
  – Cisco ASR 9000 running IOS XR shipping code
  – Cisco NCS 5500 running IOS XR shipping code
  – Cisco NCS 540 running IOS XR shipping code
  – Cisco ASR 1000 running IOS XE engineering code
  – Huawei ATN with VRPV8 shipping code
  – Huawei CX600 with VRPV8 shipping code
  – Huawei NE40E with VRPV8 shipping code
  – Huawei ME60 with VRPV8 shipping code
  – Huawei NE5000E with VRPV8 shipping code
  – Huawei NE9000 with VRPV8 shipping code
  – Huawei NG-OLT MA5800 with VRPV8 shipping code

• Additional known implementations.

Source: draft-matsushima-spring-srv6-deployment-status
Implementation and Interoperability Status

• In March 2018, the European Advanced Networking Test Center (EANTC) successfully validated multiple implementations of the drafts.

• Results for Multi-vendor Interoperability Testing was showcased at MPLS World congress in April 2019.

• Authors are aware of additional private interoperability testing between different vendors.

Source: draft-matsushima-spring-srv6-deployment-status
Draft Summary

• The document describes how existing ICMP mechanisms can be used in SRv6 Network.

• The document defines SRH.Flags.O-bit
  – The O-bit is used to implement “timestamp, punt and forward” behavior.
  – SRH.Flags.O-bit was originally defined in SRH draft.

• The document defines two OAM SIDs for programmable OAM:
  – END.OP (OAM Endpoint with Punt)
  – END.OTP (OAM Endpoint with Timestamp and Punt)
Use Cases (I-D illustrations)

- Ping
  - End-to-end
  - Segment-by-segment
- Traceroute
  - Hop-by-hop
  - Segment-by-Segment (Overlay Traceroute)
- SRv6 Paths Monitoring
  - Applicability of RFC8403 to SRv6 Networks
Next Steps

• Draft has been deployed in multiple production networks.
• Multiple interoperable implementations exist.
• The authors like to request the Spring WG for adoption of this work.