
TAPS ARCH & API open topics
Philipp S. Tiesel


IETF 105 - Montréal, Quebec, Canada



Listen filtering behavior  
(for TLS connections)? #338

The Listener object delivers connections, but doesn't 
provide a particular way to reject connections.


• The text suggests ReceivedConnection delivers a 
connection once the TLS server handshake is complete. 


• Some implementation may want to rate limit, or modify/
block inbound connections.

!2



Listen filtering behavior  
(for TLS connections)? #338

The Listener object delivers connections, but doesn't 
provide a particular way to reject connections.


Resolutions:


a. Match ReceivedConnection events with listen calls to 
allow back-pressure (analogous to receive)


b. Add additional events to control back-pressure.  
Should they be TLS specific?


c. Add Properties to control accept behavior?

!3



Add Unidirectional Streams for  
Multicast Source and Sink support #150

We have a selection property to create unidirectional 
streams in the main document, but no way to query whether 
a connection is uni-directional.


• Is the his sufficient for Multicast? 

!4



API needs a way to handle 
"STARTTLS" #249

SMTP and XMPP (among other protocols, probably) have 
"STARTTLS" semantics, where a TLS layer can be inserted 
on top of an already-existing (unencrypted) connection 
sometime after some application-layer protocol negotiation 
has already happened.


• Is the current framer architecture sufficient to realise this?

!5



Differentiating bad selection configuration 
from connection issues #307

Per the interface draft, an InitiateError gets thrown both when 
the set of (protocol) candidates is empty as well as when it is 
not possible to establish a connection.


Resolutions:


a. Add an UnsatisfiableSelectionConfiguration event


b. Add additional information the the InitiationError event


c. Do nothing and close the Issue

!6



Consider API that takes padding 
policy as input #334

Since padding is (increasingly) supported by transports, this 
should be something a TAPS implementation provides. 


Use cases for applications to control transport level padding 
include:


• Amplification prevention


• Traffic obfuscation

!7



Consider API that takes padding 
policy as input #334

Since padding is (increasingly) supported by transports, this 
should be something a TAPS implementation provides. 


Resolutions:


a. Add Selection and Message Properties to control padding.


b. Do nothing and ignore padding.

!8



Should send return  
a Message Context? #336

PR #321 removed the unspecified mgs_ref and made 
send a messageContext object instead to to make 
matching of send error events and reply messages to their 
originating message easier.


1. There are concerns that an often unused return value is 
harmful in many languages.


2. Send errors are are currently 1:1 matched with send 
calls, not (partial) messages.

!9



Should send return  
a Message Context? #336

1. There are concerns that an often unused return value is 
harmful in many languages.


Resolutions:


a. Remove the return value as messageContext can be 
created and passed explicitly.


b. Leave the return value as a convenience and make it 
optional.

!10



Should send return  
a Message Context? #336

2. Send Errors are are currently 1:1 matched with send calls, not 
(partial) messages.

• They can not just pass the message context from the send

• Applications that do byte-wise partial send may get thousands of 

send errors


Resolutions:


a. Match Send Errors and Messages (instead of sends)


b. Separate Error and Message context


c. Allow to query original message context from the message context 
provided by the error (analogous to GetOriginalRequest)

!11



How to handle Protocol stacks 
that are not equivalent #305

Per the architecture draft, only protocol stacks that are 
equivalent can be safely raced. What should happen if selection 
properties result in a candidate set that includes protocol 
stacks that are not intuitively equivalent?


Resolutions:


a. Define Protocol Stack Equivalence more rigorously.


b. Generate some kind of Error Event for configurations with 
unlike protocol stack candidates


c. Do nothing and close the issue.

!12



Draft should point at existing 
implementations #145

It might be useful to reference existing implementations 
(e.g., Apple NWConnections and PyTAPS) and similar 
systems (e.g., NEAT, PostSockets, SocketIntents) that where 
used as input to the TAPS design.


Resolutions:


a. Add section to appendix


b. Add notes to acknowledgements 


c. Do nothing and close the issue

!13



Implementation should separate 
out protocol-specific bits #248

Right now, there are protocol specific examples mixed into the generic flow 
description; then, later, there is a section that has some description for protocol 
specific considerations.


Possible re-organizations:


a. Per-protocol mappings for each API call + per-protocol specific options. This is 
a guide to each protocol, such as a section for UDP and how each call is imple-
mented for UDP, and what options UDP offers specifically. 
General discussion about Pre-Establishment, Establishment, Data Transfer, etc, 
that has less information about specific protocols.


b. Structure everything with the general topics (Pre-Establishment, Establishment, 
Data Transfer, etc), and have a rigorous list of each protocol's mappings at the 
end of each section. So, for Establishment, we describe racing, etc; and then go 
through and explain what Initiate() does for TCP, UDP, UDP Lite, QUIC, SCTP.

!14


