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Terminology
● Network Interface Card (NIC): Host’s interface to 

physical network
● Host Stack: Software stack that performs host side 

processing of L2, L3, or L4 protocols
● Kernel Stack: Host stack implemented in an OS kernel
● Offload: Do something in NIC HW that could be done in 

host SW stack
● Acceleration: Offload for performance gains
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Network Interface Cards
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Evolution of Network Interface Cards
● Fundamental support (1990s)

○ Transmit and receive packets
○ Basic offloads  (Ethernet Checksum Offload!)

● Data plane acceleration (early to mid 2000s)
○ Optimization for multi-core CPUs
○ Hardware data plane offload — mostly fixed function devices
○ Tunneling, IPsec, QoS offloads

● Programmability  (2010 onwards)
○ FPGAs and NPUs with programmable data plane
○ General purpose processor with programmable data and control planes
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Offload: Motivation
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● Free up CPU cycles for application
● Specialized processing can be more efficient
● Save host resources
● Scaling performance (low latency/high throughput)
● Power savings for some use cases

                                   => Reduced TCO (marketing slant!)



Less is More Principle
● Protocol agnostic is better than protocol specific

○ Avoid protocol ossification
○ New protocol support without needing completely new solutions

● Common open APIs are better than proprietary ones
○ Avoid vendor lock in
○ Differentiation by features, performance, implementation

● Programmability is (generally) good
○ Be adaptable, don’t dictate to the user what they are allowed to do
○ Aspiration: “write once, run anywhere” model across devices
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Basic offloads
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Offload Considerations
● TX and RX 
● Protocol agnostic versus protocol specific
● Stateful versus stateless
● Encapsulation
● “Always on” versus “opportunistic”
● IPv6 and IPv4
● How to build protocols to be NIC offload friendly
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Basic Offloads
● Checksum offload
● Segmentation offload
● Multi-queue and packet steering
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Checksum Offload

● TCP, UDP, GRE, etc...
● NIC offload calculation over data
● Checksum offload is ubiquitous
● Encapsulation allows multiple checksums in same packet
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TX Checksum Offload
● Device parses tranports and set checksum

○ Device parse packets and set TCP or UDP checksum

● Instruct device where to start and write checksum
○ Init csum field, indicate start offset and offset to write csum
○ Generic method
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RX Checksum Offload
● Checksum unnecessary

○ Device parses packet and verifies UDP or TCP checksum

● Checksum complete
○ Device return 1’s complement sum across words in the packet
○ Generic method  
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Segmentation Offload
● Stack operates more efficiently                                                

on large packets
● Combines with checksum offload to                               

minimize header processing and per packet overhead
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Transmit Segmentation Offload
● Split big packet into smaller one low in the stack
● GSO, Generic Segmentation Offload: SW variants
● LSO: HW variant
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Receive Segmentation Offload

● Coalesce small packets into bigger ones low in stack  
● Generic Receive Offload, GRO:  SW variant
● Large Receive Offload, LRO: HW variant
● Difficult to make protocol agnostic!

16



Multi-Queue
● Multiple queues exposed by NIC
● Queues processed by CPUs
● Queues can be accessed and processed in parallel, 

technique for load balancing
● Queues can also have different properties, e.g. priority
● Avoid OOO packets, maintain flow to queue affinity
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Transmit Queue Selection
● XPS, Transmit packet steering

○ Send packets on queue                                                               
associated with CPU or thread

● Driver selects queue
○ Device driver operation
○ ndo_select_queue in Linux
○ Arbitrary properties (e.g. priority)
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Receive Packet Steering

● Receive Packet Steering
○ Steer to queue based on hash
○ RPS is SW variant
○ RSS, Receive Side Scaling, is HW

● Receive Flow Steering
○ Flow to queue association
○ RFS is SW variant
○ aRFS, accelerated RFS,  is HW variant
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Data Plane in Hardware
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Data Plane in Hardware
● Fixed or minimally configurable pipeline 

○ ASIC with TCAM tables used for configuring pipeline

● Programmable Pipeline
○ Network Processing Unit/Network Flow Processor

■ Multi-threaded execution environment for data plane programs

○ FPGA
■ Gate-Level Programmable 

○ General Purpose Processor
■ CPU Complex separate from host

Offload NIC

PHY0

PHY1

PCIe
Offloaded Data Plane

PHY0

PHY1

ASIC, FPGA, 
NPU, or CPU



● Control plane stays in 
host software stack

● Offload data plane
● Hardware Fallback/ 

Assist datapath in host 
software stack

● Host software stack 
implements features of 
offload data plane

Data Plane Acceleration
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Data Plane Acceleration
● Match/Action
● Forwarding
● QoS         
● TLS and IPsec
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● Match packet based on headers 
and metadata

○ e.g: input-device + 5-tuple

● Execute actions based on match
○ Forward / Mirror
○ Drop 
○ Packet/metadata modification

● Stateful actions
○ Policing
○ Connection tracking

Host Linux

Offload NIC

Software Datapath
Match 
Tables Actions

Offload Data Plane
Match 
Tables Actions

Match/Action
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● L2 -> Ln
● Between physical and logical 

devices
● HW datapath misses can fall 

back to host
● Optional tunnel encap/decap

○ VXLAN, GRE, Geneve, …

● And tagging: VLAN, MPLS

Forwarding
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● Ingress
○ No queue
○ Police/Meter/Filter

● Egress
○ Classifier selects priority
○ Scheduler

■ Priority Scheduler, f.e. 802.1p
■ Deficit round robin
■ TSN
■ Shaping: DCB, …

QoS
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User Space

Host Linux

Offload SmartNIC
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● Per-device RED in HW
● May ECN mark or drop packets



TLS Acceleration

Offload NIC
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User Space

Application
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TLS Header
Record Payload

Ciphertext Auth Hash

Established TLS be passed to kTLS

TX Path:

● NIC driver marks packets for crypto offload 
based on packet socket

● NIC performs encrypt and TX

RX Path:

● NIC performs decrypt and auth
● Notifies kTLS of queued data
● kTLS skips decrypt of plaintext
● Handle Out-Of-Order

TLS Header
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Plaintext 0000 
0000

Auth Hash
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Crypto Offload

● HW: Encrypt/Decrypt/Integrity/LSO/Checksum
● Kernel: Padding/Anti-replay/Counters/Security Policy DB 
● User-Space: IKE

Full Offload

● HW: Replay/Encap/Decap/SPD/LSO/Checksum/LRO
● Kernel: IP fragmentation/Counters/Configuration
● User-Space: IKE

IPsec Acceleration
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Programmability
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Programmability
● Facilitates rapid protocol development
● Quickly fix bugs and security problems
● Two main types used today:

○ FPGA/NPU

○ General Purpose Processors

● Emerging trend: What is niche today can be broad tomorrow
○ IETF 104 “Forwarding Plane Realities”
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● Control plane stays in host
● Flexible offload data plane controlled 

through kernel or user space
● Data plane could be expressed by 

P4, eBPF, NPL, or other native 
instruction set

● Dynamically programmed

Programmability with FPGA or NPU

32

User Programmable NIC
PHY0

PHY1

Host

User Space

Applications

Kernel

Linux

FPGA/NPU Data Plane

Control/Data Plane
Software Datapath?

PHY0

PHY1

PCIe



General Purpose Processor
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● Move host software stack down to the NIC
● Dataplane offload to general purpose processor on NIC
● Control plane offload

○ Useful in bare metal or multi-tenant deployments
○ Network admin can control server networking

● No host resources consumed forwarding network traffic



● Capable of running complete 
Operating System

● Forwarding functionality moved 
completely away from server 
cores down to NIC

Programmable NIC with General Purpose Processor
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Programmable NIC with General Purpose Processor
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● Programmable NICs also have 
offload-capable devices
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Conclusion and Futures
● Networking trends

○ Insatiable need for more bandwidth and lower latency
○ Deployment of forward looking IETF protocols

● NICs work with hosts to make this happen
○ Offloads will be relevant for foreseeable future
○ Programmability and flexibility spur innovation
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Thank You!
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