
How NICs Work
Today

IETF 105, Montreal, Tuesday July 23, 2019
1

Tom Herbert, Intel
Simon Horman, Netronome
Andy Gospodarek, Broadcom

Fundamentals

2

Terminology
● Network Interface Card (NIC): Host’s interface to

physical network
● Host Stack: Software stack that performs host side

processing of L2, L3, or L4 protocols
● Kernel Stack: Host stack implemented in an OS kernel
● Offload: Do something in NIC HW that could be done in

host SW stack
● Acceleration: Offload for performance gains

3

Network Interface Cards

4

Evolution of Network Interface Cards
● Fundamental support (1990s)

○ Transmit and receive packets
○ Basic offloads (Ethernet Checksum Offload!)

● Data plane acceleration (early to mid 2000s)
○ Optimization for multi-core CPUs
○ Hardware data plane offload — mostly fixed function devices
○ Tunneling, IPsec, QoS offloads

● Programmability (2010 onwards)
○ FPGAs and NPUs with programmable data plane
○ General purpose processor with programmable data and control planes

5

Offload: Motivation

6

● Free up CPU cycles for application
● Specialized processing can be more efficient
● Save host resources
● Scaling performance (low latency/high throughput)
● Power savings for some use cases

 => Reduced TCO (marketing slant!)

Less is More Principle
● Protocol agnostic is better than protocol specific

○ Avoid protocol ossification
○ New protocol support without needing completely new solutions

● Common open APIs are better than proprietary ones
○ Avoid vendor lock in
○ Differentiation by features, performance, implementation

● Programmability is (generally) good
○ Be adaptable, don’t dictate to the user what they are allowed to do
○ Aspiration: “write once, run anywhere” model across devices

7

Basic offloads

8

Offload Considerations
● TX and RX
● Protocol agnostic versus protocol specific
● Stateful versus stateless
● Encapsulation
● “Always on” versus “opportunistic”
● IPv6 and IPv4
● How to build protocols to be NIC offload friendly

9

Basic Offloads
● Checksum offload
● Segmentation offload
● Multi-queue and packet steering

10

Checksum Offload

● TCP, UDP, GRE, etc...
● NIC offload calculation over data
● Checksum offload is ubiquitous
● Encapsulation allows multiple checksums in same packet

11

TX Checksum Offload
● Device parses tranports and set checksum

○ Device parse packets and set TCP or UDP checksum

● Instruct device where to start and write checksum
○ Init csum field, indicate start offset and offset to write csum
○ Generic method

12

RX Checksum Offload
● Checksum unnecessary

○ Device parses packet and verifies UDP or TCP checksum

● Checksum complete
○ Device return 1’s complement sum across words in the packet
○ Generic method

13

Segmentation Offload
● Stack operates more efficiently

on large packets
● Combines with checksum offload to

minimize header processing and per packet overhead

14

Transmit Segmentation Offload
● Split big packet into smaller one low in the stack
● GSO, Generic Segmentation Offload: SW variants
● LSO: HW variant

15

Receive Segmentation Offload

● Coalesce small packets into bigger ones low in stack
● Generic Receive Offload, GRO: SW variant
● Large Receive Offload, LRO: HW variant
● Difficult to make protocol agnostic!

16

Multi-Queue
● Multiple queues exposed by NIC
● Queues processed by CPUs
● Queues can be accessed and processed in parallel,

technique for load balancing
● Queues can also have different properties, e.g. priority
● Avoid OOO packets, maintain flow to queue affinity

17

Transmit Queue Selection
● XPS, Transmit packet steering

○ Send packets on queue
associated with CPU or thread

● Driver selects queue
○ Device driver operation
○ ndo_select_queue in Linux
○ Arbitrary properties (e.g. priority)

18

Receive Packet Steering

● Receive Packet Steering
○ Steer to queue based on hash
○ RPS is SW variant
○ RSS, Receive Side Scaling, is HW

● Receive Flow Steering
○ Flow to queue association
○ RFS is SW variant
○ aRFS, accelerated RFS, is HW variant

19

Data Plane in Hardware

20

Data Plane in Hardware
● Fixed or minimally configurable pipeline

○ ASIC with TCAM tables used for configuring pipeline

● Programmable Pipeline
○ Network Processing Unit/Network Flow Processor

■ Multi-threaded execution environment for data plane programs

○ FPGA
■ Gate-Level Programmable

○ General Purpose Processor
■ CPU Complex separate from host

Offload NIC

PHY0

PHY1

PCIe
Offloaded Data Plane

PHY0

PHY1

ASIC, FPGA,
NPU, or CPU

● Control plane stays in
host software stack

● Offload data plane
● Hardware Fallback/

Assist datapath in host
software stack

● Host software stack
implements features of
offload data plane

Data Plane Acceleration

22

Offload NIC
PHY0

PHY1

Host

User Space

Applications

Kernel

Linux

Offloaded Data Plane

Control / Dataplane
Software Datapath

PHY0

PHY1

PCIe

Data Plane Acceleration
● Match/Action
● Forwarding
● QoS
● TLS and IPsec

23

● Match packet based on headers
and metadata

○ e.g: input-device + 5-tuple

● Execute actions based on match
○ Forward / Mirror
○ Drop
○ Packet/metadata modification

● Stateful actions
○ Policing
○ Connection tracking

Host Linux

Offload NIC

Software Datapath
Match
Tables Actions

Offload Data Plane
Match
Tables Actions

Match/Action

24

● L2 -> Ln
● Between physical and logical

devices
● HW datapath misses can fall

back to host
● Optional tunnel encap/decap

○ VXLAN, GRE, Geneve, …

● And tagging: VLAN, MPLS

Forwarding

25

Host Linux

Offload NIC

Software Datapath
Match
Tables Actions

Offload Data Plane
Match
Tables Actions

Tunnel

Tunnel

● Ingress
○ No queue
○ Police/Meter/Filter

● Egress
○ Classifier selects priority
○ Scheduler

■ Priority Scheduler, f.e. 802.1p
■ Deficit round robin
■ TSN
■ Shaping: DCB, …

QoS

26

Host Linux

Offload NIC

Software Datapath
Classifier Scheduler

Offload Data Plane
Classifier Scheduler

Egress QoS

User Space

Host Linux

Offload SmartNIC

Fallback Path
Device

Offload
Fast Path MQ

RED RED RED

Application

Kernel

ApplicationApplication
MQ + RED Offload

27

● Per-device RED in HW
● May ECN mark or drop packets

TLS Acceleration

Offload NIC

Host

User Space

Application

Kernel

Linux

Framing
kTLS Module

Symmetric Crypto Offload

Encrypt/Decrypt

TLS Header
Record Payload

Ciphertext Auth Hash

Established TLS be passed to kTLS

TX Path:

● NIC driver marks packets for crypto offload
based on packet socket

● NIC performs encrypt and TX

RX Path:

● NIC performs decrypt and auth
● Notifies kTLS of queued data
● kTLS skips decrypt of plaintext
● Handle Out-Of-Order

TLS Header
Record Payload

Plaintext 0000
0000

Auth Hash

28

Crypto Offload

● HW: Encrypt/Decrypt/Integrity/LSO/Checksum
● Kernel: Padding/Anti-replay/Counters/Security Policy DB
● User-Space: IKE

Full Offload

● HW: Replay/Encap/Decap/SPD/LSO/Checksum/LRO
● Kernel: IP fragmentation/Counters/Configuration
● User-Space: IKE

IPsec Acceleration

29

Programmability

30

Programmability
● Facilitates rapid protocol development
● Quickly fix bugs and security problems
● Two main types used today:

○ FPGA/NPU

○ General Purpose Processors

● Emerging trend: What is niche today can be broad tomorrow
○ IETF 104 “Forwarding Plane Realities”

31

● Control plane stays in host
● Flexible offload data plane controlled

through kernel or user space
● Data plane could be expressed by

P4, eBPF, NPL, or other native
instruction set

● Dynamically programmed

Programmability with FPGA or NPU

32

User Programmable NIC
PHY0

PHY1

Host

User Space

Applications

Kernel

Linux

FPGA/NPU Data Plane

Control/Data Plane
Software Datapath?

PHY0

PHY1

PCIe

General Purpose Processor

33

● Move host software stack down to the NIC
● Dataplane offload to general purpose processor on NIC
● Control plane offload

○ Useful in bare metal or multi-tenant deployments
○ Network admin can control server networking

● No host resources consumed forwarding network traffic

● Capable of running complete
Operating System

● Forwarding functionality moved
completely away from server
cores down to NIC

Programmable NIC with General Purpose Processor

34

Programmable NIC
PHY0

PHY1

Host

User Space

Applications

Kernel

Linux

Software Datapath

Control/Data Plane

PHY0

PHY1

General Purpose Processor

Programmable NIC with General Purpose Processor

35

● Programmable NICs also have
offload-capable devices

Programmable NIC

Host

User Space

Applications

Kernel

Linux

FPGA/NPU/ASIC

Offloaded Datapath

Control/Data Plane

PHY0

PHY1

Control/Data Plane

Software Datapath

General Purpose Processors

Conclusion and Futures
● Networking trends

○ Insatiable need for more bandwidth and lower latency
○ Deployment of forward looking IETF protocols

● NICs work with hosts to make this happen
○ Offloads will be relevant for foreseeable future
○ Programmability and flexibility spur innovation

36

Thank You!

37

