TLS Metadata for Load
Balancers

draft-schwartz-tls-Ib
Ben Schwartz, Google LLC
IETF 105



What is a “load balancer”?

e Definition: A load balancer is a server that forwards connections from clients
to appropriate backends.

e Balancing loads is the main purpose but not the only purpose: also DDoS
defense, access control, etc.

e Aload balancer can operate at many levels in the protocol stack. We use

different terms depending on which protocol the load balancer “terminates”:

o IP: “ECMP router”

TCP: “TCP load balancer”, “reverse tunnel”

SNI: “SNI proxy”

TLS: “TLS load balancer”, “TLS termination proxy”
HTTP: “Reverse proxy”, “CDN”"

e Goal: Make it easier and safer to use SNI proxies, to reduce the need for
TLS termination by load balancers.

o O O O



Motivating use case: Full Split-mode ESNI

Shared . Server Have to give == ESNI Private Key
Client |[E————p> : )
mode (CDN) m==@)| Your private key gr—=) TLS Private Key
o to the server!
: : ESNI private key
Partial split , Backend ) _
mode Client <@ Load balancer [€——— server =0 is a widely
o u shared secret!
Backend can’t

Full split Client <@ Load balancer | €—————p Bl reply without the
mode server ESNI nonce &

—0) = —0©) decrypted SNI




State of the art: PROXY protocol

PROXY TCP4 192.168.0.1 192.168.0.11 56324 443\r\n
GET / HTTP/1.1\r\n
Host: www.example.com\r\n

\r\n

e For TCP reverse tunnels.

e Prepends info in cleartext (even if the contents are encrypted)
o Not encrypted or authenticated in any way.

e COiriginally only carried the client IP and port.
o Now extended to forward ALPN, SNI, etc. (when used by a TLS-terminating load balancer)

e Implemented by HAProxy, NGINX, Stunnel, Postfix, Squid, Jetty, etc.
e Deployed by Amazon Elastic Load Balancer, Google Cloud Load Balancing,
etc.



https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-proxy-protocol.html#proxy-protocol
https://cloud.google.com/load-balancing/docs/tcp/setting-up-tcp#proxy-protocol

Proposed architecture: Like PROXY but encrypted

1. Load balancer and backend share a long-lived symmetric* PSK.

2. On each connection, the load balancer packages the needed metadata into a
ProxyData struct.

3. Load balancer prepends ProxyData, AEAD encrypted and bound to the
ClientHello.

4. Backend decrypts and uses the info.

Load balancer — Backend

Encrypted ClientHello and remainder of
ProxyData upstream TCP data, verbatim.

*Static Diffie-Hellman is also possible.



Alternative architectures: TLS-Iin-TLS

Load balancer — Backend

ProxvData ClientHello and remainder of
y upstream TCP data, verbatim.

+ Defends ESNI privacy against a trivial two-point surveillance attack.
+ Makes padding possible, for stronger defenses in the future

+ Potentially immune to replay attacks (after 0-RTT)
+ Offers a clear way to implement a public, free load balancer (no PSK)

- Greatly increases load balancer costs
16-32x based on AWS prices

- Not clear how to extend to QUIC


https://aws.amazon.com/elasticloadbalancing/pricing/

Alternative architectures: ESNI Oracle

Load balancer — Backend

ClientHello and remainder of
upstream TCP data, verbatim.

Backend — Load balancer

+ Excellent architectural clarity

GET /oracle?esni=NzYsMTgyLDg...
Host: load-balancer.example
Authorization: Bearer LDcwLDI3k...

- Imposes a latency penalty OR creates a lot of potential complexity
- e.g. H2 PUSH and a cache on the backend

- Not clear how to support other metadata (e.g. client IP)
- Might require a very fast database on the load balancer




Questions for the group

e Should we try to standardize a solution?
e Which architecture should we pursue?



