# Low Latency Low Loss Scalable Throughput (L4S)

draft-ietf-tsvwg-l4s-arch-04 draft-ietf-tsvwg-ecn-l4s-id-07 draft-ietf-tsvwg-aqm-dualq-coupled-10

Bob Briscoe, CableLabs <ietf@bobbriscoe.net> <ietf@bobbriscoe.net>



TSVWG, IETF-105, Jul 2019

# Motivation

- Ultra-low queuing delay for all Internet applications
- including capacity-seeking (TCP-like)





### TCP Performance



- Low delay important at higher %-iles
  - for low latency real-time delivery
- median Q delay: 100-200µs
- 99%ile Q delay: 1-2ms
- ~10x lower delay than best 2<sup>nd</sup> gen. AQM
  - at all percentiles
- ...when hammering each AQM
  - fixed Ethernet
  - · long-running TCPs: 1 ECN 1 non-ECN
  - web-like flows @ 300/s ECN, 300/s non-ECN
  - · exponential arrival process
  - file sizes Pareto distr. α=0.9 1KB min 1MB max
  - 120Mb/s 10ms base RTT
- each pair of plots for one AQM is one experiment run

# The trick: scalable congestion control



## Coexistence #1

- Problem
  - Scalable congestion controls more aggressive than 'Classic' (TCP-Friendly)
- Solution without flow inspection: Dual Queue Coupled AQM
  - Counter-balance with more aggressive ECN-marking



### Coexistence #2

- Solution with flow inspection: FQ\_xxx\_L4S: simple patch
  - If ECT(1), shallow threshold (or ramp) marking
    - based on immediate queue stateless (no smoothing)
    - else mark/drop with xxx (CoDel, PIE, etc...)
- Description added to draft-ietf-tsvwg-l4s-arch

# Implementation status

#### L4S transport protocols

- TCP Prague Linux Ref
- rmcat over RTP: L4S-SCReAM
- QUIC Prague
- BBRv2

#### **L4S Transport Components**

- Linux: ECT(1), ECN++
- Linux & FreeBSD: AccECN
- Ongoing: Paced Chirping, Sub-Pkt-Wnd

#### **DualQ Coupled AQMs**

- Linux Ref Impl'n:
  - DualPI2 resubmitting to mainline
- Low Latency DOCSIS:
  - ns3 Coupled DualQ AQM
  - 2 Cable Modem chipset implementations
  - multiple CMTS implementations
- An Ethernet switch chipset:
  - Curvy RED

#### L4S FQ\_CoDel

Linux patch

# Open Source links

- Dual Queue Coupled AQM
  - Linux: https://github.com/L4STeam/sch\_dualpi2\_upstream
- L4S Demo/Test GUI
  - Linux: <a href="https://github.com/L4STeam/l4sdemo">https://github.com/L4STeam/l4sdemo</a>
- TCP Prague (ECT(1), ECN++, AccECN)
  - <a href="https://github.com/L4STeam/tcp-prague">https://github.com/L4STeam/tcp-prague</a> (Linux)
- QUIC Prague
  - <a href="https://github.com/qdeconinck/picoquic/tree/quic-prague">https://github.com/qdeconinck/picoquic/tree/quic-prague</a> (Linux, FreeBSD, Windows)
- SCReAM with L4S support
  - <a href="https://github.com/EricssonResearch/scream">https://github.com/EricssonResearch/scream</a> (Linux, FreeBSD, Windows)
- BBRv2 with L4S support
  - <a href="https://github.com/google/bbr/blob/v2alpha/README.md">https://github.com/google/bbr/blob/v2alpha/README.md</a> (Linux)
- Paced Chirping (proof-of-concept Linux research code)
  - https://github.com/JoakimMisund/PacedChirping

# Hackathon

- L4S Interop testbed (Olivier Tilmans, Koen De Schepper)
- L4S Flent regression tests (Pete Heist, Jonathan Morton, Rodney Grimes)
  - Integration with L4S testbed, validated L4S GUI results
- FreeBSD AccECN implementation (Richard Scheffenegger, Michael Tuexen)
- FreeBSD/Linux AccECN interop (Richard Scheffenegger, Olivier Tilmans)
  - first AccurateECN interop connection on the Internet (IETF network)
- TCP-Prague sub-packet-window (Asad Ahmed)
- TCP-Prague Paced Chirping in ns3 (Tom Henderson, Joakim Misund)

# TCP Prague: status against Prague L4S requirements

| L | Inux coae: | none     | none (simulated)  | research | private  | research | opened  | RFC    |      | mainline |  |
|---|------------|----------|-------------------|----------|----------|----------|---------|--------|------|----------|--|
| F | Requireme  | ents     |                   |          | base 7   | ГСР      | DCTC    | P      | TCI  | P Prague |  |
|   | L4S-ECI    | N Packet | Identification: E | ECT(1)   |          |          | module  | option | man  | ndatory  |  |
|   | Accurate   | ECN TO   | CP feedback       |          | sysctl o | ption    | ?       |        | man  | ndatory  |  |
|   | D ( .      |          | 1                 |          |          |          | inhoron | .4     | inho | vo ot    |  |

thesis write-up

default RACK

module option off

in progress

open issue

simulated

thesis write-up

default off → on later

mandatory?

thesis write-up

default RACK

in progress

on

Reno-friendly on loss ınnerent

Reno-friendly if classic ECN bottleneck

Reduce RTT dependence

**Optimizations** 

Faster flow start

Scale down to fractional window

ECN-capable TCP control packets

Detecting loss in units of time

Faster than additive increase

### Recent developments #1

# DualPI2 parameter auto-calc

- for Internet: Zero config just use defaults
- for uncommon deployments (eg. DC)
  - front-end to auto-calculate 4 parameters

| meaningful input parameters | raw input parameters       |
|-----------------------------|----------------------------|
|                             | target: queue delay        |
| RTT_typ: typical RTT        | Tupdate: sampling interval |
| RTT_max: maximum RTT        | alpha: PI integral gain    |
|                             | beta: PI proportional gain |

### Recent developments #2

# Queue Protection function

draft-briscoe-docsis-q-protection-00

- Informational write-up of DOCSIS algo for the IETF community:
  - pseudocode already published in DOCSIS spec.
  - this adds context & explanation, and
  - objective definition of flow behaviour necessary to avoid packet rejection
- Not one of the core L4S drafts not even a tsvwg draft
  - overload protection [aqm-dualq-coupled Appx A.2] likely a sufficient alternative
  - during the L4S experiment we'll see if it'is necessary (can be disabled in DOCSIS)
- V simple per-flow algo at enqueue to the DOCSIS Low Latency (L4S) queue
  - · in normal circumstances, does nothing except monitor
  - maintains per-flow\* queuing scores that allocate responsibility for excess queuing
  - the more a configured Q delay threshold is exceeded, the more packets from high-scoring flows will be rejected

<sup>\*</sup> flow state expires between a flow's packets, except for ill-behaved flows

# Open issues #1:

### RFC3168 ECN in a FIFO

- Nov 2016, after 16 months of deliberation
  - WG chose ECT(1) for L4S ECN
  - · CE ambiguous, but least worst compromise
  - L4S ECN coexists with 3168 ECN, if it's all FQ
- All academic ECN studies over the years (incl. 2017, 2019) found virtually no CE marking
  - using active measurement
- Mar 2017 study by Apple found CE marking
  - using passive measurement

| Codepoint | IP-ECN bits | Meaning                       |
|-----------|-------------|-------------------------------|
| Not-ECT   | 00          | Not ECN-Capable Transport     |
| ECT(0)    | / 10        | Classic ECN-Capable Transport |
| ECT(1)    | 01          | L4S ECN-Capable Transport     |
| CE        | 11          | Congestion Experienced        |

#### Networks with CE marking

 Percentage of reports that have seen any CE marking on any of the ECN enabled connections in a 12 hour period

| Country            | Percentage |
|--------------------|------------|
| United States      | 0.2        |
| China              | 1          |
| Mexico             | 3.2        |
| France             | 6          |
| Argentine Republic | 30         |

Marking was mainly seen on the uplink

ECN deployment Padma Bhooma MAPRG 98th IETF Chicago March 2017

12

# Open issues #1: RFC3168 ECN in a FIFO

Risk

- Assumed all RFC3168 ECN AQMs likely to be FQ\_CoDel
  - So L4S traffic would coexist with TCP-Friendly
- What to do if assumption is unsound?

#### **Ground truth**

- Any FIFO RFC3168 ECN routers enabled?
  - Two CDNs testing for Echo CE
  - Access to results not assured
- Devised targeted FQ v FIFO test

#### Hi-risk: Run-Time Detection?

- L4S sender Measures RTT variance
- (To be implemented/tested)

#### Quantify flow imbalance

Testbed measurements (next slide)

#### Lo-risk, add advice to L4S expt:

 Limit experiment over your networks (e.g. disable on CDN ports) if RFC3168 AQM is or will be deployed

### Open issues #1: RFC3168 ECN in a FIFO



### Open issues #2

# Loss detection in time units

- Objections and proposed fixes:
  - 1)'MUST' could be interpreted as a prohibition of 3DupACK in controlled environments where reordering is vanishingly small anyway
    - new wording proposed
  - 2)Overloads one codepoint with two architecturally distinct functions: low queuing delay & low resequencing delay
    - Consider value vs cost of 2 independent identifiers
  - 3)One experiment (L4S) depending on another (RACK)
    - Underlying concern: to avoid L4S success depending on a failed experiment
    - If RACK fails (it's already widely deployed), this aspect of L4S can be relaxed
    - Note: dependency on the *idea* under RACK, not a normative reference

### Open issues #2

# Loss detection in time units

- Ways forward (for WG to decide):
  - Write as a MUST or a SHOULD?
  - Warn that service could degrade if ignore SHOULD

lacktriangle

### L4S status update: IETF specs

#### Deltas since last IETF in Red

#### tsvwg

- L4S Internet Service: Architecture <draft-ietf-tsvwg-l4s-arch-04> [UPDATE]
- Identifying Modified ECN Semantics for Ultra-Low Queuing Delay (L4S) <draft-ietf-tsvwg-ecn-l4s-id-07> [UPDATE]
- DualQ Coupled AQMs for L4S: : <draft-ietf-tsvwg-aqm-dualq-coupled-10> [UPDATE]
- Interactions of L4S with Diffserv <draft-briscoe-tsvwg-l4s-diffserv-02>
- Identifying and Handling Non-Queue-Building Flows in a bottleneck link draft-white-tsvwg-nqb-02 [UPDATE]
- Low Latency DOCSIS Technology Overview draft-white-tsvwg-lld-00
- DOCSIS Low Latency Queue Protection draft-briscoe-docsis-q-protection-00 [NEW]
- enabled by <RFC8311> [RFC published]

#### tcpm

- scalable TCP algorithms, e.g. Data Centre TCP (DCTCP) <RFC8257>, TCP Prague
- Accurate ECN: <draft-ietf-tcpm-accurate-ecn-09> [UPDATE]
- ECN++ Adding ECN to TCP control packets: <draft-ietf-tcpm-generalized-ecn-04> [UPDATE]

#### Other

- ECN support in trill <draft-ietf-trill-ecn-support-07>, motivated by L4S [RFC Ed Q]
- ECN in QUIC <draft-ietf-quic-transport-22>, [motivated by L4S Multiple Updates, but not ECN part]
- ECN & Congestion F/b Using the Network Service Header (NSH) < draft-ietf-sfc-nsh-ecn-support-01> [ADOPTED] [supports L4S-ECN]

# Next Steps for 3 core L4S drafts

- Classic ECN bottleneck work
- WG Last Call (?)
- Address issues raised



L4S experiment can start

Low Latency Low Loss Scalable Throughput (L4S)

Q&A

# **ECN** transitions

- RFC3168 & RFC8311
  - ECT(0) → CE
  - ECT(1) → CE
- RFC6040 added support for RFC6660
  - ECT(0) → ECT(1)
- Many encapsulations will still be pre-RFC6040
  - decap will revert ECT(1)
- Ambiguity of CE
  - ECT(0) → CE early on path
     CE → L4S queue later on path
  - 5 unlikely scenarios have to coincide to cause an occasional spurious re-xmt

| incoming | incoming outer                      |                   |                |                 |  |  |
|----------|-------------------------------------|-------------------|----------------|-----------------|--|--|
| inner    | Not-ECT                             | ECT(0) ECT(1)     |                | CE              |  |  |
| Not-ECT  | Not-ECT                             | Not-ECT           | Not-ECT        | drop<br>Not-ECT |  |  |
| ECT(0)   | ECT(0)                              | ECT(0)            | ECT(0)         | CE              |  |  |
| ECT(1)   | ECT(1)                              | ECT(1)            | ECT(1)         | CE              |  |  |
| CE       | CE                                  | CE                |                | CE              |  |  |
|          | Outgoing header (RFC4301 \ RFC3168) |                   |                |                 |  |  |
| incoming | incoming outer                      |                   |                |                 |  |  |
| inner    | Not-ECT                             | ECT(0)            | ECT(1)         | CE              |  |  |
| Not-ECT  | Not ECT                             | N. DOT            |                |                 |  |  |
| NOI-EC1  | Not-ECT                             | Not-ECT           | Not-ECT        | drop            |  |  |
| ECT(0)   | ECT(0)                              | Not-ECT<br>ECT(0) | Not-ECT ECT(1) | drop<br>CE      |  |  |
|          |                                     |                   |                | •               |  |  |

Outgoing header (RFC6040)

(bold = change for all IP in IP)