Proposed New DSCP: Non Queue Building (NQB)
draft-white-tsvwg-nqb-02

Greg White, CableLabs
Thomas Fossati, ARM
TSVWG @ IETF105
July 25, 2019
• Goal
 • Low latency and low loss for “sparse” traffic flows
 • Code point describes a verifiable behavior, not a value judgement
 • No incentive to mismark packets

• Applicability
 • Dual-queue L4S link:
 • Identify non-congestion controlled flows that can coexist with L4S traffic in the LL-queue
 • Links with QoS classes that have optimizations for sparse traffic

• Use Cases
 • Cable Broadband (DOCSIS) link
 • LTE/5G link
 • WiFi link
Updates draft-01 -> draft-02

• Main changes
 • Merges “LoLa” (developed for LTE) into “NQB”
 • Explicit use cases section discussing DOCSIS, Mobile (LTE), WiFi

• Other changes
 • In “Comparison to Existing Approaches” section, reference “RD” mechanism, and previous “LoLa” approach.
 • Discusses implications on RFC8325 (“Mapping Diffserv to IEEE 802.11”)
Queue Protection Mechanism

• Draft recommends that the PHB include a QP mechanism
 • i.e. monitor queue depth and identify flows that are causing queue growth. Redirect such flows.
• Not needed in nodes that provide per-flow isolation (e.g. fq)
• Example algorithm provided in:
 • draft-briscoe-docsis-q-protection-00
Non-Queue-Building (NQB) flow definition

• Non-congestion-controlled

• Claims that it will not cause a queue, i.e.
 • Relatively low peak data rate – expects to remain below available capacity in path

• If it does cause queue build-up, will suffer some consequences
 • In L4S with Queue Protection, mismarked packets would get reclassified to Classic Queue
 • May see higher latency, may arrive out of order
 • In LTE/5G, may see higher loss (?)
 • In fq_codel, will suffer from its own queue delay
NQB PHB definition

• Not a guaranteed service

• A node supporting the NQB PHB MUST queue non-queue-building traffic separate from queue-building traffic.

• *This queue SHOULD disable AQM-induced packet drops for NQB marked packets.*

• This queue SHOULD support a latency-based queue protection mechanism that is able to identify QB behavior in flows that are classified into the NQB queue, and to redirect flows causing queue build-up to a QB queue.

• Networks that support the NQB PHB SHOULD preserve the NQB DSCP when forwarding via an interconnect.

• Specific requirements for DOCSIS, LTE/5G, 802.11
Proposal: NQB = 0x2A (42, 0b101010)

• A currently unassigned codepoint in DSCP Pool 1 (standards action)

• Some implementations may wish to utilize a single queue for NQB and EF traffic
 • NQB = 0x2A = 0b101010
 • EF = 0x2E = 0b101110
 • single classifier (0b101*10) would match both

• WiFi APs commonly default to mapping DSCP = 0b10**** to the Video Access Category (AC_VI)
 • Draft recommends that RFC8325 devices implement mapping NQB to UP_6 (AC_VI) as well.

Common Defaults in WMM

<table>
<thead>
<tr>
<th>DSCP</th>
<th>WiFi Access Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>000***</td>
<td>Background (AC_BK)</td>
</tr>
<tr>
<td>011***</td>
<td></td>
</tr>
<tr>
<td>001***</td>
<td>Best Effort (AC_BE)</td>
</tr>
<tr>
<td>010***</td>
<td></td>
</tr>
<tr>
<td>10****</td>
<td>Video (AC_VI)</td>
</tr>
<tr>
<td>11****</td>
<td>Voice (AC_VO)</td>
</tr>
</tbody>
</table>
Comments received (mailing list & offline)

• Add 5G nomenclature to Mobile section

• Mobile networks make use of highly variable channel capacity via deep buffering. Would be interesting to run lab tests to investigate the queue-depth & queue-protection implications.

• [offline] for LTE change:
 • “...MUST ... [use] ... low-latency ... bearer with QCI 7”
 to:
 • “...MUST ... [use] ... low-latency ... bearer, e.g. with QCI 7”.

• Several network operators (mobile & cable) and others expressing interest
Seeking WG adoption