
Internet Engineering Task Force R. Wilton, Ed.
Internet-Draft D. Ball
Intended status: Standards Track T. Singh
Expires: May 7, 2020 Cisco Systems
 S. Sivaraj
 Juniper Networks
 November 4, 2019

 Common Interface Extension YANG Data Models
 draft-ietf-netmod-intf-ext-yang-08

Abstract

 This document defines two YANG modules that augment the Interfaces
 data model defined in the "YANG Data Model for Interface Management"
 with additional configuration and operational data nodes to support
 common lower layer interface properties, such as interface MTU.

 The YANG modules in this document conform to the Network Management
 Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Wilton, et al. Expires May 7, 2020 [Page 1]

Internet-Draft Interface Extensions YANG November 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 1.2. Tree Diagrams . 4
 2. Interface Extensions Module 4
 2.1. Carrier Delay . 5
 2.2. Dampening . 6
 2.2.1. Suppress Threshold 7
 2.2.2. Half-Life Period 7
 2.2.3. Reuse Threshold 7
 2.2.4. Maximum Suppress Time 7
 2.3. Encapsulation . 7
 2.4. Loopback . 8
 2.5. Maximum frame size 8
 2.6. Sub-interface . 8
 2.7. Forwarding Mode . 9
 3. Interfaces Ethernet-Like Module 9
 4. Interface Extensions YANG Module 10
 5. Interfaces Ethernet-Like YANG Module 20
 6. Examples . 24
 6.1. Carrier delay configuration 24
 6.2. Dampening configuration 25
 6.3. MAC address configuration 26
 7. Acknowledgements . 28
 8. ChangeLog . 28
 8.1. Version -08 . 28
 8.2. Version -07 . 28
 8.3. Version -06 . 28
 8.4. Version -05 . 28
 8.5. Version -04 . 28
 8.6. Version -03 . 28
 8.7. Version -02 . 28
 9. IANA Considerations . 29
 10. Security Considerations 29
 10.1. ietf-if-extensions.yang 29
 10.2. ietf-if-ethernet-like.yang 30
 11. References . 30
 11.1. Normative References 30
 11.2. Informative References 31
 Authors’ Addresses . 32

Wilton, et al. Expires May 7, 2020 [Page 2]

Internet-Draft Interface Extensions YANG November 2019

1. Introduction

 This document defines two NMDA compatible [RFC8342] YANG 1.1
 [RFC7950] modules for the management of network interfaces. It
 defines various augmentations to the generic interfaces data model
 [RFC8343] to support configuration of lower layer interface
 properties that are common across many types of network interface.

 One of the aims of this document is to provide a standard definition
 for these configuration items regardless of the underlying interface
 type. For example, a definition for configuring or reading the MAC
 address associated with an interface is provided that can be used for
 any interface type that uses Ethernet framing.

 Several of the augmentations defined here are not backed by any
 formal standard specification. Instead, they are for features that
 are commonly implemented in equivalent ways by multiple independent
 network equipment vendors. The aim of this document is to define
 common paths and leaves for the configuration of these equivalent
 features in a uniform way, making it easier for users of the YANG
 model to access these features in a vendor independent way. Where
 necessary, a description of the expected behavior is also provided
 with the aim of ensuring vendors implementations are consistent with
 the specified behaviour.

 Given that the modules contain a collection of discrete features with
 the common theme that they generically apply to interfaces, it is
 plausible that not all implementors of the YANG module will decide to
 support all features. Hence separate feature keywords are defined
 for each logically discrete feature to allow implementors the
 flexibility to choose which specific parts of the model they support.

 The augmentations are split into two separate YANG modules that each
 focus on a particular area of functionality. The two YANG modules
 defined in this document are:

 ietf-if-extensions.yang - Defines extensions to the IETF interface
 data model to support common configuration data nodes.

 ietf-if-ethernet-like.yang - Defines a module for any
 configuration and operational data nodes that are common across
 interfaces that use Ethernet framing.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

Wilton, et al. Expires May 7, 2020 [Page 3]

Internet-Draft Interface Extensions YANG November 2019

 14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they
 appear in all capitals, as shown here.

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Interface Extensions Module

 The Interfaces Extensions YANG module provides some basic extensions
 to the IETF interfaces YANG module.

 The module provides:

 o A carrier delay feature used to provide control over short lived
 link state flaps.

 o An interface link state dampening feature that is used to provide
 control over longer lived link state flaps.

 o An encapsulation container and extensible choice statement for use
 by any interface types that allow for configurable L2
 encapsulations.

 o A loopback configuration leaf that is primarily aimed at loopback
 at the physical layer.

 o MTU configuration leaves applicable to all packet/frame based
 interfaces.

 o A forwarding mode leaf to indicate the OSI layer at which the
 interface handles traffic.

 o A generic "sub-interface" identity that an interface identity
 definition can derive from if it defines a sub-interface.

 o A parent interface leaf useable for all types of sub-interface
 that are children of parent interfaces.

Wilton, et al. Expires May 7, 2020 [Page 4]

Internet-Draft Interface Extensions YANG November 2019

 The "ietf-if-extensions" YANG module has the following structure:

 module: ietf-if-extensions
 augment /if:interfaces/if:interface:
 +--rw carrier-delay {carrier-delay}?
 | +--rw down? uint32
 | +--rw up? uint32
 | +--ro carrier-transitions? yang:counter64
 | +--ro timer-running? enumeration
 +--rw dampening! {dampening}?
 | +--rw half-life? uint32
 | +--rw reuse? uint32
 | +--rw suppress? uint32
 | +--rw max-suppress-time? uint32
 | +--ro penalty? uint32
 | +--ro suppressed? boolean
 | +--ro time-remaining? uint32
 +--rw encapsulation
 | +--rw (encaps-type)?
 +--rw loopback? identityref {loopback}?
 +--rw max-frame-size? uint32 {max-frame-size}?
 +--ro forwarding-mode? identityref
 augment /if:interfaces/if:interface:
 +--rw parent-interface if:interface-ref {sub-interfaces}?

2.1. Carrier Delay

 The carrier delay feature augments the IETF interfaces data model
 with configuration for a simple algorithm that is used, generally on
 physical interfaces, to suppress short transient changes in the
 interface link state. It can be used in conjunction with the
 dampening feature described in Section 2.2 to provide effective
 control of unstable links and unwanted state transitions.

 The principle of the carrier delay feature is to use a short per
 interface timer to ensure that any interface link state transition
 that occurs and reverts back within the specified time interval is
 entirely suppressed without providing any signalling to any upper
 layer protocols that the state transition has occurred. E.g. in the
 case that the link state transition is suppressed then there is no
 change of the /if:interfaces/if:interface/oper-status or
 /if:interfaces/if:interfaces/last-change leaves for the interface
 that the feature is operating on. One obvious side effect of using
 this feature that is that any state transition will always be delayed
 by the specified time interval.

Wilton, et al. Expires May 7, 2020 [Page 5]

Internet-Draft Interface Extensions YANG November 2019

 The configuration allows for separate timer values to be used in the
 suppression of down->up->down link transitions vs up->down->up link
 transitions.

 The carrier delay down timer leaf specifies the amount of time that
 an interface that is currently in link up state must be continuously
 down before the down state change is reported to higher level
 protocols. Use of this timer can cause traffic to be black holed for
 the configured value and delay reconvergence after link failures,
 therefore its use is normally restricted to cases where it is
 necessary to allow enough time for another protection mechanism (such
 as an optical layer automatic protection system) to take effect.

 The carrier delay up timer leaf specifies the amount of time that an
 interface that is currently in link down state must be continuously
 up before the down->up link state transition is reported to higher
 level protocols. This timer is generally useful as a debounce
 mechanism to ensure that a link is relatively stable before being
 brought into service. It can also be used effectively to limit the
 frequency at which link state transition events may occur. The
 default value for this leaf is determined by the underlying network
 device.

2.2. Dampening

 The dampening feature introduces a configurable exponential decay
 mechanism to suppress the effects of excessive interface link state
 flapping. This feature allows the network operator to configure a
 device to automatically identify and selectively dampen a local
 interface which is flapping. Dampening an interface keeps the
 interface operationally down until the interface stops flapping and
 becomes stable. Configuring the dampening feature can improve
 convergence times and stability throughout the network by isolating
 failures so that disturbances are not propagated, which reduces the
 utilization of system processing resources by other devices in the
 network and improves overall network stability.

 The basic algorithm uses a counter that is increased by 1000 units
 every time the underlying interface link state changes from up to
 down. If the counter increases above the suppress threshold then the
 interface is kept down (and out of service) until either the maximum
 suppression time is reached, or the counter has reduced below the
 reuse threshold. The half-life period determines that rate at which
 the counter is periodically reduced by half.

Wilton, et al. Expires May 7, 2020 [Page 6]

Internet-Draft Interface Extensions YANG November 2019

2.2.1. Suppress Threshold

 The suppress threshold is the value of the accumulated penalty that
 triggers the device to dampen a flapping interface. The flapping
 interface is identified by the device and assigned a penalty for each
 up to down link state change, but the interface is not automatically
 dampened. The device tracks the penalties that a flapping interface
 accumulates. When the accumulated penalty reaches or exceeds the
 suppress threshold, the interface is placed in a suppressed state.

2.2.2. Half-Life Period

 The half-life period determines how fast the accumulated penalties
 can decay exponentially. The accumulated penalty decays at a rate
 that causes its value to be reduced by half after each half-life
 period.

2.2.3. Reuse Threshold

 If, after one or more half-life periods, the accumulated penalty
 decreases below the reuse threshold and the underlying interface link
 state is up then the interface is taken out of suppressed state and
 is allowed to go up.

2.2.4. Maximum Suppress Time

 The maximum suppress time represents the maximum amount of time an
 interface can remain dampened when a new penalty is assigned to an
 interface. The default of the maximum suppress timer is four times
 the half-life period. The maximum value of the accumulated penalty
 is calculated using the maximum suppress time, reuse threshold and
 half-life period.

2.3. Encapsulation

 The encapsulation container holds a choice node that is to be
 augmented with datalink layer specific encapsulations, such as HDLC,
 PPP, or sub-interface 802.1Q tag match encapsulations. The use of a
 choice statement ensures that an interface can only have a single
 datalink layer protocol configured.

 The different encapsulations themselves are defined in separate YANG
 modules defined in other documents that augument the encapsulation
 choice statement. For example the Ethernet specific basic ’dot1q-
 vlan’ encapsulation is defined in ietf-if-l3-vlan.yang and the
 ’flexible’ encapsulation is defined in ietf-flexible-
 encapsulation.yang, both modules from
 [I-D.ietf-netmod-sub-intf-vlan-model].

Wilton, et al. Expires May 7, 2020 [Page 7]

Internet-Draft Interface Extensions YANG November 2019

2.4. Loopback

 The loopback configuration leaf allows any physical interface to be
 configured to be in one of the possible following physical loopback
 modes, i.e. internal loopback, line loopback, or use of an external
 loopback connector. The use of YANG identities allows for the model
 to be extended with other modes of loopback if required.

 The following loopback modes are defined:

 o Internal loopback - All egress traffic on the interface is
 internally looped back within the interface to be received on the
 ingress path.

 o Line loopback - All ingress traffic received on the interface is
 internally looped back within the interface to the egress path.

 o Loopback Connector - The interface has a physical loopback
 connector attached that loops all egress traffic back into the
 interface’s ingress path, with equivalent semantics to internal
 loopback.

2.5. Maximum frame size

 A maximum frame size configuration leaf (max-frame-size) is provided
 to specify the maximum size of a layer 2 frame that may be
 transmitted or received on an interface. The value includes the
 overhead of any layer 2 header, the maximum length of the payload,
 and any frame check sequence (FCS) bytes. If configured, the max-
 frame-size leaf on an interface also restricts the max-frame-size of
 any child sub-interfaces, and the available MTU for protocols.

2.6. Sub-interface

 The sub-interface feature specifies the minimal leaves required to
 define a child interface that is parented to another interface.

 A sub-interface is a logical interface that handles a subset of the
 traffic on the parent interface. Separate configuration leaves are
 used to classify the subset of ingress traffic received on the parent
 interface to be processed in the context of a given sub-interface.
 All egress traffic processed on a sub-interface is given to the
 parent interface for transmission. Otherwise, a sub-interface is
 like any other interface in /if:interfaces and supports the standard
 interface features and configuration.

 For some vendor specific interface naming conventions the name of the
 child interface is sufficient to determine the parent interface,

Wilton, et al. Expires May 7, 2020 [Page 8]

Internet-Draft Interface Extensions YANG November 2019

 which implies that the child interface can never be reparented to a
 different parent interface after it has been created without deleting
 the existing sub-interface and recreating a new sub-interface. Even
 in this case it is useful to have a well defined leaf to cleanly
 identify the parent interface.

 The model also allows for arbitrarily named sub-interfaces by having
 an explicit parent-interface leaf define the child -> parent
 relationship. In this naming scenario it is also possible for
 implementations to allow for logical interfaces to be reparented to
 new parent interfaces without needing the sub-interface to be
 destroyed and recreated.

2.7. Forwarding Mode

 The forwarding mode leaf provides additional information as to what
 mode or layer an interface is logically operating and forwarding
 traffic at. The implication of this leaf is that for traffic
 forwarded at a given layer that any headers for lower layers are
 stripped off before the packet is forwarded at the given layer.
 Conversely, on egress any lower layer headers must be added to the
 packet before it is transmitted out of the interface.

 The following forwarding modes are defined:

 o Physical - Traffic is being forwarded at the physical layer. This
 includes DWDM or OTN based switching.

 o Data-link - Layer 2 based forwarding, such as Ethernet/VLAN based
 switching, or L2VPN services.

 o Network - Network layer based forwarding, such as IP, MPLS, or
 L3VPNs.

3. Interfaces Ethernet-Like Module

 The Interfaces Ethernet-Like Module is a small module that contains
 all configuration and operational data that is common across
 interface types that use Ethernet framing as their datalink layer
 encapsulation.

 This module currently contains leaves for the configuration and
 reporting of the operational MAC address and the burnt-in MAC address
 (BIA) associated with any interface using Ethernet framing.

Wilton, et al. Expires May 7, 2020 [Page 9]

Internet-Draft Interface Extensions YANG November 2019

 The "ietf-if-ethernet-like" YANG module has the following structure:

 module: ietf-if-ethernet-like
 augment /if:interfaces/if:interface:
 +--rw ethernet-like
 +--rw mac-address? yang:mac-address
 | {configurable-mac-address}?
 +--ro bia-mac-address? yang:mac-address
 augment /if:interfaces/if:interface/if:statistics:
 +--ro in-drop-unknown-dest-mac-pkts? yang:counter64

4. Interface Extensions YANG Module

 This YANG module augments the interface container defined in RFC 8343
 [RFC8343].

 <CODE BEGINS> file "ietf-if-extensions@2019-11-04.yang"
 module ietf-if-extensions {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-if-extensions";

 prefix if-ext;

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model For Interface Management";
 }

 import iana-if-type {
 prefix ianaift;
 reference "RFC 7224: IANA Interface Type YANG Module";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>

Wilton, et al. Expires May 7, 2020 [Page 10]

Internet-Draft Interface Extensions YANG November 2019

 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module contains common definitions for extending the IETF
 interface YANG model (RFC 8343) with common configurable layer 2
 properties.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2019-11-04 {
 description
 "Initial revision.";

 reference
 "RFC XXX, Common Interface Extension YANG Data Models";
 }

 feature carrier-delay {
 description
 "This feature indicates that configurable interface
 carrier delay is supported, which is a feature is used to
 limit the propagation of very short interface link state
 flaps.";
 reference "RFC XXX, Section 2.1 Carrier Delay";
 }

 feature dampening {

Wilton, et al. Expires May 7, 2020 [Page 11]

Internet-Draft Interface Extensions YANG November 2019

 description
 "This feature indicates that the device supports interface
 dampening, which is a feature that is used to limit the
 propagation of interface link state flaps over longer
 periods.";
 reference "RFC XXX, Section 2.2 Dampening";
 }

 feature loopback {
 description
 "This feature indicates that configurable interface loopback
 is supported.";
 reference "RFC XXX, Section 2.4 Loopback";
 }

 feature max-frame-size {
 description
 "This feature indicates that the device supports configuring
 or reporting the maximum frame size on interfaces.";
 reference "RFC XXX, Section 2.5 Maximum Frame Size";
 }

 feature sub-interfaces {
 description
 "This feature indicates that the device supports the
 instantiation of sub-interfaces. Sub-interfaces are defined
 as logical child interfaces that allow features and forwarding
 decisions to be applied to a subset of the traffic processed
 on the specified parent interface.";
 reference "RFC XXX, Section 2.6 Sub-interface";
 }

 /*
 * Define common identities to help allow interface types to be
 * assigned properties.
 */
 identity sub-interface {
 description
 "Base type for generic sub-interfaces.

 New or custom interface types can derive from this type to
 inherit generic sub-interface configuration.";
 reference "RFC XXX, Section 2.6 Sub-interface";
 }

 identity ethSubInterface{
 base ianaift:l2vlan;
 base sub-interface;

Wilton, et al. Expires May 7, 2020 [Page 12]

Internet-Draft Interface Extensions YANG November 2019

 description
 "This identity represents the child sub-interface of any
 interface types that uses Ethernet framing (with or without
 802.1Q tagging).";
 }

 identity loopback {
 description "Base identity for interface loopback options";
 reference "RFC XXX, Section 2.4";
 }
 identity internal {
 base loopback;
 description
 "All egress traffic on the interface is internally looped back
 within the interface to be received on the ingress path.";
 reference "RFC XXX, Section 2.4";
 }
 identity line {
 base loopback;
 description
 "All ingress traffic received on the interface is internally
 looped back within the interface to the egress path.";
 reference "RFC XXX, Section 2.4";
 }
 identity connector {
 base loopback;
 description
 "The interface has a physical loopback connector attached that
 loops all egress traffic back into the interface’s ingress
 path, with equivalent semantics to loopback internal.";
 reference "RFC XXX, Section 2.4";
 }

 identity forwarding-mode {
 description "Base identity for forwarding-mode options.";
 reference "RFC XXX, Section 2.7";
 }
 identity physical {
 base forwarding-mode;
 description
 "Physical layer forwarding. This includes DWDM or OTN based
 optical switching.";
 reference "RFC XXX, Section 2.7";
 }
 identity data-link {
 base forwarding-mode;
 description

Wilton, et al. Expires May 7, 2020 [Page 13]

Internet-Draft Interface Extensions YANG November 2019

 "Layer 2 based forwarding, such as Ethernet/VLAN based
 switching, or L2VPN services.";
 reference "RFC XXX, Section 2.7";
 }
 identity network {
 base forwarding-mode;
 description
 "Network layer based forwarding, such as IP, MPLS, or L3VPNs.";
 reference "RFC XXX, Section 2.7";
 }

 /*
 * Augments the IETF interfaces model with leaves to configure
 * and monitor carrier-delay on an interface.
 */
 augment "/if:interfaces/if:interface" {
 description
 "Augments the IETF interface model with optional common
 interface level commands that are not formally covered by any
 specific standard.";

 /*
 * Defines standard YANG for the Carrier Delay feature.
 */
 container carrier-delay {
 if-feature "carrier-delay";
 description
 "Holds carrier delay related feature configuration.";
 leaf down {
 type uint32;
 units milliseconds;
 description
 "Delays the propagation of a ’loss of carrier signal’ event
 that would cause the interface state to go down, i.e. the
 command allows short link flaps to be suppressed. The
 configured value indicates the minimum time interval (in
 milliseconds) that the carrier signal must be continuously
 down before the interface state is brought down. If not
 configured, the behaviour on loss of carrier signal is
 vendor/interface specific, but with the general
 expectation that there should be little or no delay.";
 }
 leaf up {
 type uint32;
 units milliseconds;
 description
 "Defines the minimum time interval (in milliseconds) that

Wilton, et al. Expires May 7, 2020 [Page 14]

Internet-Draft Interface Extensions YANG November 2019

 the carrier signal must be continuously present and error
 free before the interface state is allowed to transition
 from down to up. If not configured, the behaviour is
 vendor/interface specific, but with the general
 expectation that sufficient default delay should be used
 to ensure that the interface is stable when enabled before
 being reported as being up. Configured values that are
 too low for the hardware capabilties may be rejected.";
 }
 leaf carrier-transitions {
 type yang:counter64;
 units transitions;
 config false;
 description
 "Defines the number of times the underlying carrier state
 has changed to, or from, state up. This counter should be
 incremented even if the high layer interface state changes
 are being suppressed by a running carrier-delay timer.";
 }
 leaf timer-running {
 type enumeration {
 enum none {
 description
 "No carrier delay timer is running.";
 }
 enum up {
 description
 "Carrier-delay up timer is running. The underlying
 carrier state is up, but interface state is not
 reported as up.";
 }
 enum down {
 description
 "Carrier-delay down timer is running. Interface state
 is reported as up, but the underlying carrier state is
 actually down.";
 }
 }
 config false;
 description
 "Reports whether a carrier delay timer is actively running,
 in which case the interface state does not match the
 underlying carrier state.";
 }

 reference "RFC XXX, Section 2.1 Carrier Delay";
 }

Wilton, et al. Expires May 7, 2020 [Page 15]

Internet-Draft Interface Extensions YANG November 2019

 /*
 * Augments the IETF interfaces model with a container to hold
 * generic interface dampening
 */
 container dampening {
 if-feature "dampening";
 presence
 "Enable interface link flap dampening with default settings
 (that are vendor/device specific).";
 description
 "Interface dampening limits the propagation of interface link
 state flaps over longer periods.";
 reference "RFC XXX, Section 2.2 Dampening";

 leaf half-life {
 type uint32;
 units seconds;
 description
 "The time (in seconds) after which a penalty would be half
 its original value. Once the interface has been assigned
 a penalty, the penalty is decreased at a decay rate
 equivalent to the half-life. For some devices, the
 allowed values may be restricted to particular multiples
 of seconds. The default value is vendor/device
 specific.";
 reference "RFC XXX, Section 2.3.2 Half-Life Period";
 }

 leaf reuse {
 type uint32;
 description
 "Penalty value below which a stable interface is
 unsuppressed (i.e. brought up) (no units). The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is 1000 units.";
 reference "RFC XXX, Section 2.2.3 Reuse Threshold";
 }

 leaf suppress {
 type uint32;
 description
 "Limit at which an interface is suppressed (i.e. held down)
 when its penalty exceeds that limit (no units). The value
 must be greater than the reuse threshold. The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is 1000 units.";
 reference "RFC XXX, Section 2.2.1 Suppress Threshold";
 }

Wilton, et al. Expires May 7, 2020 [Page 16]

Internet-Draft Interface Extensions YANG November 2019

 leaf max-suppress-time {
 type uint32;
 units seconds;
 description
 "Maximum time (in seconds) that an interface can be
 suppressed before being unsuppressed if no further link
 up->down state change penalties have been applied. This
 value effectively acts as a ceiling that the penalty value
 cannot exceed. The default value is vendor/device
 specific.";
 reference "RFC XXX, Section 2.2.4 Maximum Suppress Time";
 }

 leaf penalty {
 type uint32;
 config false;
 description
 "The current penalty value for this interface. When the
 penalty value exceeds the ’suppress’ leaf then the
 interface is suppressed (i.e. held down).";
 reference "RFC XXX, Section 2.2 Dampening";
 }

 leaf suppressed {
 type boolean;
 config false;
 description
 "Represents whether the interface is suppressed (i.e. held
 down) because the ’penalty’ leaf value exceeds the
 ’suppress’ leaf.";
 reference "RFC XXX, Section 2.2 Dampening";
 }

 leaf time-remaining {
 when ’../suppressed = "true"’ {
 description
 "Only suppressed interfaces have a time remaining.";
 }
 type uint32;
 units seconds;
 config false;
 description
 "For a suppressed interface, this leaf represents how long
 (in seconds) that the interface will remain suppressed
 before it is allowed to go back up again.";
 reference "RFC XXX, Section 2.2 Dampening";
 }
 }

Wilton, et al. Expires May 7, 2020 [Page 17]

Internet-Draft Interface Extensions YANG November 2019

 /*
 * Various types of interfaces support a configurable layer 2
 * encapsulation, any that are supported by YANG should be
 * listed here.
 *
 * Different encapsulations can hook into the common encaps-type
 * choice statement.
 */
 container encapsulation {
 when
 "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:pos’) or
 derived-from-or-self(../if:type,
 ’ianaift:atmSubInterface’) or
 derived-from-or-self(../if:type, ’ethSubInterface’)" {

 description
 "All interface types that can have a configurable L2
 encapsulation.";
 }

 description
 "Holds the OSI layer 2 encapsulation associated with an
 interface.";
 choice encaps-type {
 description
 "Extensible choice of layer 2 encapsulations";
 reference "RFC XXX, Section 2.3 Encapsulation";
 }
 }

 /*
 * Various types of interfaces support loopback configuration,
 * any that are supported by YANG should be listed here.
 */
 leaf loopback {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type, ’ianaift:sonet’) or
 derived-from-or-self(../if:type, ’ianaift:atm’) or
 derived-from-or-self(../if:type, ’ianaift:otnOtu’)" {
 description
 "All interface types that support loopback configuration.";
 }
 if-feature "loopback";

Wilton, et al. Expires May 7, 2020 [Page 18]

Internet-Draft Interface Extensions YANG November 2019

 type identityref {
 base loopback;
 }
 description "Enables traffic loopback.";
 reference "RFC XXX, Section 2.4 Loopback";
 }

 /*
 * Allows the maximum frame size to be configured or reported.
 */
 leaf max-frame-size {
 if-feature "max-frame-size";
 type uint32 {
 range "64 .. max";
 }
 description
 "The maximum size of layer 2 frames that may be transmitted
 or received on the interface (including any frame header,
 maximum frame payload size, and frame checksum sequence).

 If configured, the max-frame-size also limits the maximum
 frame size of any child sub-interfaces. The MTU available
 to higher layer protocols is restricted to the maximum frame
 payload size, and MAY be further restricted by explicit
 layer 3 or protocol specific MTU configuration.";

 reference "RFC XXX, Section 2.5 Maximum Frame Size";
 }

 /*
 * Augments the IETF interfaces model with a leaf that indicates
 * which mode, or layer, is being used to forward the traffic.
 */
 leaf forwarding-mode {
 type identityref {
 base forwarding-mode;
 }
 config false;

 description
 "The forwarding mode that the interface is operating in.";
 reference "RFC XXX, Section 2.7 Forwarding Mode";
 }
 }

 /*
 * Add generic support for sub-interfaces.
 *

Wilton, et al. Expires May 7, 2020 [Page 19]

Internet-Draft Interface Extensions YANG November 2019

 * This should be extended to cover all interface types that are
 * child interfaces of other interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "derived-from(if:type, ’sub-interface’) or
 derived-from-or-self(if:type, ’ianaift:atmSubInterface’) or
 derived-from-or-self(if:type, ’ianaift:frameRelay’)" {
 description
 "Any ianaift:types that explicitly represent sub-interfaces
 or any types that derive from the sub-interface identity.";
 }
 if-feature "sub-interfaces";

 description
 "Adds a parent interface field to interfaces that model
 sub-interfaces.";
 leaf parent-interface {

 type if:interface-ref;

 mandatory true;
 description
 "This is the reference to the parent interface of this
 sub-interface.";
 reference "RFC XXX, Section 2.6 Sub-interface";
 }
 }
 }
 <CODE ENDS>

5. Interfaces Ethernet-Like YANG Module

 This YANG module augments the interface container defined in RFC 8343
 [RFC8343] for Ethernet-like interfaces. This includes Ethernet
 interfaces, 802.3 LAG (802.1AX) interfaces, VLAN sub-interfaces,
 Switch Virtual interfaces, and Pseudo-Wire Head-End interfaces.

 <CODE BEGINS> file "ietf-if-ethernet-like@2019-11-04.yang"
 module ietf-if-ethernet-like {
 yang-version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like";

 prefix ethlike;

Wilton, et al. Expires May 7, 2020 [Page 20]

Internet-Draft Interface Extensions YANG November 2019

 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model For Interface Management";
 }

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

 import iana-if-type {
 prefix ianaift;
 reference "RFC 7224: IANA Interface Type YANG Module";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module contains YANG definitions for configuration for
 ’Ethernet-like’ interfaces. It is applicable to all interface
 types that use Ethernet framing and expose an Ethernet MAC
 layer, and includes such interfaces as physical Ethernet
 interfaces, Ethernet LAG interfaces and VLAN sub-interfaces.

 Additional interface configuration and counters for physical
 Ethernet interfaces are defined in
 ieee802-ethernet-interface.yang, as part of IEEE Std
 802.3.2-2019.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

Wilton, et al. Expires May 7, 2020 [Page 21]

Internet-Draft Interface Extensions YANG November 2019

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.";

 revision 2019-11-04 {
 description "Initial revision.";

 reference
 "RFC XXX, Common Interface Extension YANG Data Models";
 }

 feature configurable-mac-address {
 description
 "This feature indicates that MAC addresses on Ethernet-like
 interfaces can be configured.";
 reference "RFC XXX, Section 3 Interfaces Ethernet-Like Module";
 }

 /*
 * Configuration parameters for Ethernet-like interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "derived-from-or-self(if:type, ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(if:type, ’ianaift:ieee8023adLag’) or
 derived-from-or-self(if:type, ’ianaift:ifPwType’)" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augment the interface model with parameters for all
 Ethernet-like interfaces.";

 container ethernet-like {
 description
 "Contains parameters for interfaces that use Ethernet framing
 and expose an Ethernet MAC layer.";

 leaf mac-address {
 if-feature "configurable-mac-address";
 type yang:mac-address;
 description
 "The MAC address of the interface. The operational value
 matches the /if:interfaces/if:interface/if:phys-address
 leaf defined in ietf-interface.yang.";
 }

 leaf bia-mac-address {
 type yang:mac-address;

Wilton, et al. Expires May 7, 2020 [Page 22]

Internet-Draft Interface Extensions YANG November 2019

 config false;
 description
 "The ’burnt-in’ MAC address. I.e the default MAC address
 assigned to the interface if no MAC address has been
 explicitly configured on it.";
 }
 }
 }

 /*
 * Configuration parameters for Ethernet-like interfaces.
 */
 augment "/if:interfaces/if:interface/if:statistics" {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:ifPwType’)" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augment the interface model statistics with additional
 counters related to Ethernet-like interfaces.";

 leaf in-drop-unknown-dest-mac-pkts {
 type yang:counter64;
 units frames;
 description
 "A count of the number of frames that were well formed, but
 otherwise dropped because the destination MAC address did
 not pass any ingress destination MAC address filter.

 For consistency, frames counted against this drop counters
 are also counted against the IETF interfaces statistics. In
 particular, they are included in in-octets and in-discards,
 but are not included in in-unicast-pkts, in-multicast-pkts
 or in-broadcast-pkts, because they are not delivered to a
 higher layer.

 Discontinuities in the values of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of the ’discontinuity-time’
 leaf defined in the ietf-interfaces YANG module (RFC 8343).";
 }
 }
 }
 <CODE ENDS>

Wilton, et al. Expires May 7, 2020 [Page 23]

Internet-Draft Interface Extensions YANG November 2019

6. Examples

 The following sections give some examples of how different parts of
 the YANG modules could be used. Examples are not given for the more
 trivial configuration, or for sub-interfaces, for which examples are
 contained in [I-D.ietf-netmod-sub-intf-vlan-model].

6.1. Carrier delay configuration

 The following example shows how the operational state datastore could
 look like for an Ethernet interface without any carrier delay
 configuration. The down leaf value of 0 indicates that link down
 events as always propagated to high layers immediately, but an up
 leaf value of 50 indicates that the interface must be up and stable
 for at least 50 msecs before the interface is reported as being up to
 the high layers.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <if-ext:carrier-delay>
 <if-ext:down>0</if-ext:down>
 <if-ext:up>50</if-ext:up>
 </if-ext:carrier-delay>
 </interface>
 </interfaces>

 The following example shows explicit carrier delay up and down values
 have been configured. A 50 msec down leaf value has been used to
 potentially allow optical protection to recover the link before the
 higher layer protocol state is flapped. A 1 second (1000
 milliseconds) up leaf value has been used to ensure that the link is
 always reasonably stable before allowing traffic to be carried over
 it. This also has the benefit of greatly reducing the rate at which
 higher layer protocol state flaps could occur.

Wilton, et al. Expires May 7, 2020 [Page 24]

Internet-Draft Interface Extensions YANG November 2019

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <if-ext:carrier-delay>
 <if-ext:down>50</if-ext:down>
 <if-ext:up>1000</if-ext:up>
 </if-ext:carrier-delay>
 </interface>
 </interfaces>
 </config>

6.2. Dampening configuration

 The following example shows what the operational state datastore may
 look like for an interface configured with interface dampening. The
 ’suppressed’ leaf indicates that the interface is currently
 suppressed (i.e. down) because the ’penalty’ is greater than the
 ’suppress’ leaf threshold. The ’time-remaining’ leaf indicates that
 the interface will remain suppressed for another 103 seconds before
 the ’penalty’ is below the ’reuse’ leaf value and the interface is
 allowed to go back up again.

Wilton, et al. Expires May 7, 2020 [Page 25]

Internet-Draft Interface Extensions YANG November 2019

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <oper-status>down</oper-status>
 <dampening
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <half-life>60</half-life>
 <reuse>750</reuse>
 <suppress>2000</suppress>
 <max-suppress-time>240</max-suppress-time>
 <penalty>2480</penalty>
 <suppressed>true</suppressed>
 <time-remaining>103</time-remaining>
 </dampening>
 </interface>
 </interfaces>

6.3. MAC address configuration

 The following example shows how the operational state datastore could
 look like for an Ethernet interface without an explicit MAC address
 configured. The mac-address leaf always reports the actual
 operational MAC address that is in use. The bia-mac-address leaf
 always reports the default MAC address assigned to the hardware.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <phys-address>00:00:5E:00:53:30</phys-address>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:30</mac-address>
 <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
 </ethernet-like>
 </interface>
 </interfaces>

Wilton, et al. Expires May 7, 2020 [Page 26]

Internet-Draft Interface Extensions YANG November 2019

 The following example shows the intended configuration for interface
 eth0 with an explicit MAC address configured.

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:35</mac-address>
 </ethernet-like>
 </interface>
 </interfaces>
 </config>

 After the MAC address configuration has been successfully applied,
 the operational state datastore reporting the interface MAC address
 properties would contain the following, with the mac-address leaf
 updated to match the configured value, but the bia-mac-address leaf
 retaining the same value - which should never change.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <phys-address>00:00:5E:00:53:35</phys-address>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:35</mac-address>
 <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
 </ethernet-like>
 </interface>
 </interfaces>

Wilton, et al. Expires May 7, 2020 [Page 27]

Internet-Draft Interface Extensions YANG November 2019

7. Acknowledgements

 The authors wish to thank Eric Gray, Ing-Wher Chen, Jon Culver,
 Juergen Schoenwaelder, Ladislav Lhotka, Lou Berger, Mahesh
 Jethanandani, Martin Bjorklund, Michael Zitao, Neil Ketley, Qin Wu,
 William Lupton, Xufeng Liu, Andy Bierman, and Vladimir Vassilev for
 their helpful comments contributing to this document.

8. ChangeLog

 XXX, RFC Editor, please delete this change log before publication.

8.1. Version -08

 o Initial updates after WG LC comments.

8.2. Version -07

 o Minor editorial updates

8.3. Version -06

 o Remove reservable-bandwidth, based on Acee’s suggestion

 o Add examples

 o Add additional state parameters for carrier-delay and dampening

8.4. Version -05

 o Incorporate feedback from Andy Bierman

8.5. Version -04

 o Incorporate feedback from Lada, some comments left as open issues.

8.6. Version -03

 o Fixed incorrect module name references, and updated tree output

8.7. Version -02

 o Minor changes only: Fix errors in when statements, use derived-
 from-or-self() for future proofing.

Wilton, et al. Expires May 7, 2020 [Page 28]

Internet-Draft Interface Extensions YANG November 2019

9. IANA Considerations

 This document defines several new YANG module and the authors
 politely request that IANA assigns unique names to the two YANG
 module files contained within this document, and also appropriate
 URIs in the "IETF XML Registry".

10. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol RFC 6241 [RFC6241]. The lowest NETCONF layer is
 the secure transport layer and the mandatory to implement secure
 transport is SSH RFC 6242 [RFC6242]. The NETCONF access control
 model RFC 6536 [RFC6536] provides the means to restrict access for
 particular NETCONF users to a pre-configured subset of all available
 NETCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module which
 are writable/creatable/deletable (i.e. config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g. edit-config) to
 these data nodes without proper protection can have a negative effect
 on network operations. These are the subtrees and data nodes and
 their sensitivity/vulnerability:

10.1. ietf-if-extensions.yang

 The ietf-if-extensions YANG module contains various configuration
 leaves that affect the behavior of interfaces. Modifying these
 leaves can cause an interface to go down, or become unreliable, or to
 drop traffic forwarded over it. More specific details of the
 possible failure modes are given below.

 The following leaf could cause the interface to go down and stop
 processing any ingress or egress traffic on the interface. It could
 also cause broadcast traffic storms.

 o /if:interfaces/if:interface/loopback

 The following leaves could cause instabilities at the interface link
 layer, and cause unwanted higher layer routing path changes if the
 leaves are modified, although they would generally only affect a
 device that had some underlying link stability issues:

 o /if:interfaces/if:interface/carrier-delay/down

 o /if:interfaces/if:interface/carrier-delay/up

Wilton, et al. Expires May 7, 2020 [Page 29]

Internet-Draft Interface Extensions YANG November 2019

 o /if:interfaces/if:interface/dampening/half-life

 o /if:interfaces/if:interface/dampening/reuse

 o /if:interfaces/if:interface/dampening/suppress

 o /if:interfaces/if:interface/dampening/max-suppress-time

 The following leaves could cause traffic loss on the interface
 because the received or transmitted frames do not comply with the
 frame matching criteria on the interface and hence would be dropped:

 o /if:interfaces/if:interface/encapsulation

 o /if:interfaces/if:interface/max-frame-size

 o /if:interfaces/if:interface/forwarding-mode

 Changing the parent-interface leaf could cause all traffic on the
 affected interface to be dropped. The affected leaf is:

 o /if:interfaces/if:interface/parent-interface

10.2. ietf-if-ethernet-like.yang

 Generally, the configuration nodes in the ietf-if-ethernet-like YANG
 module are concerned with configuration that is common across all
 types of Ethernet-like interfaces. The module currently only
 contains a node for configuring the operational MAC address to use on
 an interface. Adding/modifying/deleting this leaf has the potential
 risk of causing protocol instability, excessive protocol traffic, and
 general traffic loss, particularly if the configuration change caused
 a duplicate MAC address to be present on the local network . The
 following leaf is affected:

 o interfaces/interface/ethernet-like/mac-address

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Wilton, et al. Expires May 7, 2020 [Page 30]

Internet-Draft Interface Extensions YANG November 2019

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

11.2. Informative References

 [I-D.ietf-netmod-sub-intf-vlan-model]
 Wilton, R., Ball, D., tapsingh@cisco.com, t., and S.
 Sivaraj, "Sub-interface VLAN YANG Data Models", draft-
 ietf-netmod-sub-intf-vlan-model-05 (work in progress),
 March 2019.

 [IEEE802.3.2]
 IEEE WG802.3 - Ethernet Working Group, "IEEE
 802.3.2-2019", 2019.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

Wilton, et al. Expires May 7, 2020 [Page 31]

Internet-Draft Interface Extensions YANG November 2019

 [RFC7224] Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <https://www.rfc-editor.org/info/rfc7224>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems

 Email: rwilton@cisco.com

 David Ball
 Cisco Systems

 Email: daviball@cisco.com

 Tapraj Singh
 Cisco Systems

 Email: tapsingh@cisco.com

 Selvakumar Sivaraj
 Juniper Networks

 Email: ssivaraj@juniper.net

Wilton, et al. Expires May 7, 2020 [Page 32]

