
Network Working Group J. Clarke, Ed.

Internet-Draft Cisco Systems, Inc.

Intended status: Informational July 3, 2019

Expires: January 4, 2020

 YANG Module Versioning Requirements

 draft-ietf-netmod-yang-versioning-reqs-01

Abstract

 This document describes the problems that can arise because of the

 YANG language module update rules, that require all updates to YANG

 module preserve strict backwards compatibility. It also defines the

 requirements on any solution designed to solve the stated problems.

 This document does not consider possible solutions, nor endorse any

 particular solution.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

Clarke Expires January 4, 2020 [Page 1]

Internet-Draft YANG Versioning Requirements July 2019

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Background . 2

 2.1. Striving for model perfection 3

 2.2. Some YANG Modules Are Not Backwards-Compatible 3

 2.3. Non-Backwards-Compatible Errors 4

 2.4. No way to easily decide whether a change is Backwards-

 Compatible . 4

 2.5. No good way to specify which module revision to import . 5

 2.6. Early Warning about Removal 6

 2.7. Clear Indication of Node Support 6

 3. Terminology and Conventions 7

 4. The Problem Statement . 7

 5. Requirements of a YANG Versioning Solution 9

 6. Contributors . 11

 7. Acknowledgments . 11

 8. Security Considerations 11

 9. IANA Considerations . 12

 10. References . 12

 10.1. Normative References 12

 10.2. Informative References 12

 Author’s Address . 12

1. Introduction

 This requirements document initially considers some of the existing

 YANG module update rules, then describes the problems that arise due

 to those rules embracing strict backwards compatibility, and finally

 defines requirements on any solution that may be designed to solve

 these problems by providing an alternative YANG versioning strategy.

2. Background

 The YANG data modeling language [RFC7950] specifies strict rules for

 updating YANG modules (see section 11 "Updating a Module"). Citing a

 few of the relevant rules:

 1. "As experience is gained with a module, it may be desirable to

 revise that module. However, changes to published modules are

 not allowed if they have any potential to cause interoperability

 problems between a client using an original specification and a

 server using an updated specification."

Clarke Expires January 4, 2020 [Page 2]

Internet-Draft YANG Versioning Requirements July 2019

 2. "Note that definitions contained in a module are available to be

 imported by any other module and are referenced in "import"

 statements via the module name. Thus, a module name MUST NOT be

 changed. Furthermore, the "namespace" statement MUST NOT be

 changed, since all XML elements are qualified by the namespace."

 3. "Otherwise, if the semantics of any previous definition are

 changed (i.e., if a non-editorial change is made to any

 definition other than those specifically allowed above), then

 this MUST be achieved by a new definition with a new identifier."

 4. "deprecated indicates an obsolete definition, but it permits new/

 continued implementation in order to foster interoperability with

 older/existing implementations."

 The rules described above, along with other similar rules, causes

 various problems, as described in the following sections:

2.1. Striving for model perfection

 The points made above lead to the logical conclusion that the

 standardized YANG modules have to be perfect on day one (at least the

 structure and meaning), which in turn might explain why IETF YANG

 modules take so long to standardize. Shooting for perfection is

 obviously a noble goal, but if the perfect standard comes too late,

 it doesn’t help the industry.

2.2. Some YANG Modules Are Not Backwards-Compatible

 As we learn from our mistakes, we’re going to face more and more non-

 backwards-compatible YANG modules. An example is the YANG data model

 for L3VPN service delivery [RFC8049], which, based on implementation

 experience, has been updated in a non-backwards-compatible way by

 [RFC8299].

 While Standards Development Organization (SDO) YANG modules are

 obviously better for the industry, we must recognize that many YANG

 modules are actually generated YANG modules (for example, from

 internal databases), which is sometimes the case for vendor modules

 [RFC8199]. From time to time, the new YANG modules are not

 backwards-compatible.

 Old module parts that are no longer needed, no longer supported, or

 are not used by consumers need to be removed from modules. It is

 often hard to decide which parts are no longer needed/used; still the

 need and practice of removing old parts exist. While it is rare in

 standard modules it is more common in vendor YANG modules where the

 usage of modules is more controlled.

Clarke Expires January 4, 2020 [Page 3]

Internet-Draft YANG Versioning Requirements July 2019

 The problems described in Section 2.7 may also result in incompatible

 changes.

 In such cases, it would be better to indicate how backwards-

 compatible a given YANG module actually is.

 As modules are sometimes updated in an incompatible way the current

 assumption that once a YANG module is defined all further revisions

 can be freely used as they are compatible is not valid.

2.3. Non-Backwards-Compatible Errors

 Sometimes small errors force us to make non-backwards-compatible

 updates. As an example imagine that we have a string with a complex

 pattern (e.g., an IP address). Let’s assume the initial pattern

 incorrectly allows IP addresses to start with 355. In the next

 version this is corrected to disallow addresses starting with 355.

 Formally this is a non-backwards-compatible change as the value space

 of the string is decreased. In reality an IP address and the

 implementation behind it was never capable of handling an address

 starting with 355. So practically this is a backwards-compatible

 change, just like a correction of the description statement. Current

 YANG rules are ambiguous as to whether non-backwards-compatible bug

 fixes are allowed without also requiring a module name change.

2.4. No way to easily decide whether a change is Backwards-Compatible

 A management system, SDN controller, or any other user of a module

 should be capable of easily determining the compatibility between two

 module versions. Higher level logic for a network function,

 something that cannot be implemented in a purely model driven way, is

 always dependent on a specific version of the module. If the client

 finds that the module has been updated on the network node, it has to

 decide if it tries to handle it as it handled the previous version of

 the model or if it just stops, to avoid problems. To make this

 decision the client needs to know if the module was updated in a

 backwards-compatible way or not.

 This is not possible to decide today because of the following:

 o It is sometimes necessary to change the semantic behavior of a

 data node, action or rpc while the YANG definition does not change

 (with the possible exception of the description statement). In

 such a case it is impossible to determine whether the change is

 backwards-compatible just by looking at the YANG statements. It’s

 only the human model designer who can decide.

Clarke Expires January 4, 2020 [Page 4]

Internet-Draft YANG Versioning Requirements July 2019

 o Problems with the deprecated and obsolete status statement,

 Section 2.7

 o YANG module authors might decide to violate YANG 1.1 update rules

 for some of the reasons above.

 Finding status changes or violations of update rules need a line-by-

 line comparison of the old and new modules is a tedious task.

2.5. No good way to specify which module revision to import

 If a module (MOD-A) is imported by another one (MOD-B) the importer

 may specify which revision must be imported. Even if MOD-A is

 updated in a backwards-compatible way not all revisions will be

 suitable, e.g., a new MOD-B might need the newest MOD-A. However,

 both specifying or omitting the revision date for import leads to

 problems.

 If the import by revision-date is specified

 o If corrections are made to MOD-A these would not have any effect

 as the import’s revision date would still point to the un-

 corrected earlier YANG module revision.

 o If MOD-A is updated in a backwards-compatible way because another

 importer (MOD-C) needs some functionality, the new MOD-A could be

 used by MOD-B, but specifying the exact import revision-date

 prevents this. This will force the implementers to import two

 different revisions of MOD-A, forcing them to maintain old MOD-A

 revisions unnecessarily.

 o If multiple modules import different revisions of MOD-A the human

 user will need to understand the subtle differences between the

 different revisions. Small differences would easily lead to

 operator mistakes as the operator will rarely check the

 documentation.

 o Tooling/SW is often not prepared to handle multiple revisions of

 the same YANG module.

 If the import revision-date is not specified

 o any revision of MOD-A may be used including unsuitable ones.

 Older revisions may be lacking functionality MOD-B needs. Newer

 MOD-A revisions may obsolete definitions used by MOD-B in which

 case these must not be used by MOD-B anymore.

Clarke Expires January 4, 2020 [Page 5]

Internet-Draft YANG Versioning Requirements July 2019

 o As it is not specified which revisions of MOD-A are suitable for

 MOD-B. The problem has to be solved on a case by case basis

 studying all the details of MOD-A and MOD-B which is considerable

 work.

2.6. Early Warning about Removal

 If a schema part is considered old/bad we need to be able to give

 advance warning that it will be removed. As this is an advance

 warning the part must still be present and usable in the current

 revision; however, it will be removed in one of the next revisions.

 The deprecated statement cannot be reliably used for this purpose

 both because deprecated nodes may not be implemented and also there

 is no mandate that text be provided explaining the deprecation.

 We need the advance warning to allow users of the module time to

 plan/execute migration away from the deprecated functionality.

 Deprecation should be accompanied by information whether the

 functionality will just disappear or that there is an alternative,

 possibly more advanced solution that should be used.

 Vendors use such warnings often, but the NMDA related redesign of

 IETF modules is also an example where it would be useful for IETF.

 As another example, see the usage of deprecated in the Java

 programming language.

2.7. Clear Indication of Node Support

 The current definition of deprecated and obsolete in [RFC7950] (as

 quoted below) is problematic and should be corrected.

 o "deprecated" indicates an obsolete definition, but it permits new/

 continued implementation in order to foster interoperability with

 older/existing implementations.

 o "obsolete" means that the definition is obsolete and SHOULD NOT be

 implemented and/or can be removed from implementations.

 YANG is considered an interface contract between the server and the

 client. The current definitions of deprecated and obsolete mean that

 a schema node that is either deprecated or obsolete may or may not be

 implemented. The client has no way to find out which is the case

 except for by trying to write or read data at the leaf in question.

 This probing would need to be done for each separate data-node, which

 is not a trivial thing to do. This "may or may not" is unacceptable

 in a contract. In effect, this works as if there would be an if-

 feature statement on each deprecated schema node where the server

Clarke Expires January 4, 2020 [Page 6]

Internet-Draft YANG Versioning Requirements July 2019

 does not advertise whether the feature is supported or not. Why is

 it not advertised?

3. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

 In addition, this document uses the following terminology:

 o YANG module revision: An instance of a YANG module, with no

 implied ordering or backwards compatibility between different

 revisions of the same module."

 o YANG module version: A YANG module revision, but also with an

 implied partial ordering relationship between other versions of

 the same module. Each module version must be uniquely

 identifiable.

 o Non-backwards-compatible (NBC): In the context of this document,

 the term ’non-backwards-compatible’ refers to a change or set of

 changes between two YANG module revisions that do not adhere to

 the list of allowable changes specified in Section 11 "Updating a

 Module" of [RFC7950], with the following additional clarification:

 * Any addition of, or change to, a "status" statement that allows

 a server to remove support for a schema node is considered a

 non-backwards-compatible change

4. The Problem Statement

 Considering the issues described in the background, the problem

 definition can be summarized as follows.

 Development of data models for a large collection of communication

 protocols and system components is difficult and typically only

 manageable with an iterative development process. Agile development

 approaches advocate evolutionary development, early delivery, and

 continual improvement. They are designed to support rapid and

 flexible response to change. Agile development has been found to be

 very successful in a world where the objects being modeled undergo

 constant changes.

 The current module versioning scheme relies on the fundamental idea

 that a definition, once published, never changes its semantics. As a

 consequence, if a new definition is needed with different non-

 backwards-compatible semantics, then a new definition must be created

Clarke Expires January 4, 2020 [Page 7]

Internet-Draft YANG Versioning Requirements July 2019

 to replace the old definition. The advantage of this versioning

 scheme is that a definition identified by a module name and a path

 has fixed semantics that never change. (The details are a bit more

 nuanced but we simplify things here a bit in order to get the

 problems worked out clearly.)

 There are two main disadvantages of the current YANG versioning

 scheme:

 o Any non-backwards-compatible change of a definition requires

 either a new module name or a new path. This has been found

 costly to support in implementations, in particular on the client

 side.

 o Since non-backwards-compatible changes require either a new module

 name or a new path, such changes will impact other modules that

 import definitions. In fact, with the current module versioning

 scheme other modules have to opt-in in order to use the new

 version. This essentially leads to a ripple effect where a non-

 backwards-compatible change of a core module causes updates on a

 potentially large number of dependent modules.

 Other problems experienced with the current YANG versioning scheme

 are the following:

 o YANG has a mechanism to mark definitions deprecated but it leaves

 it open whether implementations are expected to implement

 deprecated definitions and there is no way (other than trial and

 error) for a client to find out whether deprecated definitions are

 supported by a given implementation.

 o YANG does not have a robust mechanism to document which data

 definitions have changed and to provide guidance how

 implementations should deal with the change. While it is possible

 to have this described in general description statements, having

 these details embedded in general description statements does not

 make this information accessible to tools.

 o YANG data models often do not exist in isolation and they interact

 with other software systems or data models that often do allow

 (controlled) non-backwards-compatible changes. In some cases,

 YANG models are mechanically derived from other data models that

 do allow (controlled) non-backwards-compatible changes. In such

 situations, a robust mapping to YANG requires to have version

 numbers exposed as part of the module name or a path definition,

 which has been found to be expensive on the client side (see

 above).

Clarke Expires January 4, 2020 [Page 8]

Internet-Draft YANG Versioning Requirements July 2019

 Given the need to support agile development processes and the

 disadvantages and problems of the current YANG versioning scheme

 described above, it is necessary to develop requirements and

 solutions for a future YANG versioning scheme that better supports

 agile development processes, whilst retaining the ability for servers

 to handle clients using older versions of YANG modules.

5. Requirements of a YANG Versioning Solution

 The following is a list of requirements that a solution to the

 problems mentioned above MUST or SHOULD have. The list is grouped by

 similar requirements but is not presented in a set priority order.

 1. Requirements related to making non-backwards-compatible updates

 to modules:

 1.1 A mechanism is REQUIRED to update a module in a non-

 backwards-compatible way without forcing all modules with

 import dependencies on the updated module from being updated

 at the same time (e.g. to change its import to use a new

 module name).

 1.2 Non-backwards-compatible updates of a module MUST not impact

 clients that only access data nodes of the module that have

 either not been updated or have been updated in backwards-

 compatible ways.

 1.3 A refined form of YANG’s ’import’ statement MUST be provided

 that is more restrictive than "import any revision" and less

 restrictive than "import a specific revision". Once non-

 backwards-compatible changes to modules are allowed, the

 refined import statement is used to express the correct

 dependency between modules.

 1.4 The solution MUST be able to express when non-backwards-

 compatible changes have occurred between two revisions of a

 given YANG module.

 2. Requirements related to identifying changes between different

 module revisions:

 2.1 Readers of modules, and tools that use modules, MUST be able

 to determine whether changes between two revisions of a

 module constitute a backwards-compatible or non-backwards-

 compatible version change. In addition, it MAY be helpful

 to identify whether changes represent bug fixes, new

 functionality, or both.

Clarke Expires January 4, 2020 [Page 9]

Internet-Draft YANG Versioning Requirements July 2019

 2.2 A mechanism SHOULD be defined to determine whether data

 nodes between two arbitrary YANG module revisions have (i)

 not changed, (ii) changed in a backwards-compatible way,

 (iii) changed in a non-backwards-compatible way.

 3. Requirements related to supporting existing clients in a

 backwards-compatible way:

 3.1 The solution MUST provide a mechanism to allow servers to

 support existing clients in a backwards-compatible way.

 3.2 The solution MUST provide a mechanism to support clients

 that expect an older version of a given module when the

 current version has had non-backwards-compatible changes.

 3.3 Clients are expected to be able to handle unexpected

 instance data resulting from backwards-compatible changes.

 4. Requirements related to managing and documenting the life cycle

 of data nodes:

 4.1 A mechanism is REQUIRED to allow a client to determine

 whether deprecated nodes are implemented by the server.

 4.2 If a data node is deprecated or obsolete then it MUST be

 possible to document in the YANG module what alternatives

 exist, the reason for the status change, or any other status

 related information.

 4.3 A mechanism is REQUIRED to indicate that certain definitions

 in a YANG module will become status obsolete in future

 revisions but definitions marked as such MUST still be

 implemented by compliant servers.

 5. Requirements related to documentation and education:

 5.1 The solution MUST provide guidance to model authors and

 clients on how to use the new YANG versioning scheme.

 5.2 The solution is REQUIRED to describe how to transition from

 the existing YANG 1.0/1.1 versioning scheme to the new

 scheme.

 5.3 The solution MUST describe how the versioning scheme affects

 the interpretation of instance data and references to

 instance data, for which the schema definition has been

 updated in a non-backwards-compatible way.

Clarke Expires January 4, 2020 [Page 10]

Internet-Draft YANG Versioning Requirements July 2019

6. Contributors

 This document grew out of the YANG module versioning design team that

 started after IETF 101. The following people are members of that

 design team and have contributed to defining the problem and

 specifying the requirements:

 o Balazs Lengyel

 o Benoit Claise

 o Ebben Aries

 o Jason Sterne

 o Joe Clarke

 o Juergen Schoenwaelder

 o Mahesh Jethanandani

 o Michael (Wangzitao)

 o Qin Wu

 o Reshad Rahman

 o Rob Wilton

7. Acknowledgments

 The design team would like to thank Christian Hopps and Vladimir

 Vassilev for their feedback and perspectives in shaping and fine

 tuning the versioning requirements.

 One of the inspirations for solving the YANG module versioning comes

 from OpenConfig. The authors would like to thank Anees Shaikh and

 Rob Shakir for their helpful input.

8. Security Considerations

 The document does not define any new protocol or data model. There

 is no security impact.

Clarke Expires January 4, 2020 [Page 11]

Internet-Draft YANG Versioning Requirements July 2019

9. IANA Considerations

 None

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

10.2. Informative References

 [RFC8049] Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data

 Model for L3VPN Service Delivery", RFC 8049,

 DOI 10.17487/RFC8049, February 2017,

 <https://www.rfc-editor.org/info/rfc8049>.

 [RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module

 Classification", RFC 8199, DOI 10.17487/RFC8199, July

 2017, <https://www.rfc-editor.org/info/rfc8199>.

 [RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,

 "YANG Data Model for L3VPN Service Delivery", RFC 8299,

 DOI 10.17487/RFC8299, January 2018,

 <https://www.rfc-editor.org/info/rfc8299>.

Author’s Address

 Joe Clarke (editor)

 Cisco Systems, Inc.

 7200-12 Kit Creek Rd

 Research Triangle Park, North Carolina

 United States of America

 Phone: +1-919-392-2867

 Email: jclarke@cisco.com

Clarke Expires January 4, 2020 [Page 12]

