NETMOD Working Group M. Boucadair
Internet-Draft Orange
Intended status: Standards Track Q. Wu
Expires: May 6, 2020 Z. Wang
Huawei

D. King

Lancaster University

C. Xie

China Telecom

November 3, 2019

Framework for Use of ECA (Event Condition Action) in Network Self
Management
draft-bwd-netmod-eca-framework-00

Abstract

Event-driven management is meant to provide a useful method to
monitor state change of managed objects and resources, and facilitate
automatic triggering of a response to events, based on an established
set of rules. This would provide rapid autonomic responses to
specific conditions, enabling self-management behaviors, including:
self-configuration, self-healing, self-optimization, and self-
protection.

This document provides a framework that describes the architecture
for supporting event-driven management of managed object state across
devices. It does not describe specific protocols or protocol
extensions needed to realize the objectives and capabilities
discussed in the document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It 1s inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 6, 2020.

Boucadair, et al. Expires May 6, 2020 [Page 1]

Internet-Draft ECA Framework November 2019

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 2
1.1. Terminology 4
2. Problem Statement . 4
2.1. Defining Network Event and Network Control Loglc 4
2.2 Delegating Network Control Logic to Network Device 4
2.3 Executing ECA Script in the Network Device 5
2.4 Event-Driven Notification Handling 6
2.5. Requisite State Information 6
3. Architectural Concepts 7
3.1. What is Defined in ECA Pollcy'> 7
3.2. Where is ECA Script and State Held9 8
3.3. What State is Held? 9
4. Architecture Overview 9
4.1. Telemetry Automation in the Network Dev1ce 10
4.2. Detecting and Resolving Policy Conflict 12
4.3. Chain Reaction of Coordinated Events 12
5. Security Considerations 12
6. Acknowledgements 13
7. References e e e 13
7.1. Normative References 13
7.2. Informative References 14
Authors’ Addresses 15

1. Introduction

Network management data objects can often take two different wvalues:
the value configured by the administrator or an application
(configuration) and the value that the device is actually using
(operational state). Particularly, these network management data
objects can be fetched from various different YANG datastore

Boucadair, et al. Expires May 6, 2020 [Page 2]

Internet-Draft ECA Framework November 2019

[RFC8342] by subscribing to continuous datastore updates [RFC8641]
without needing to poll for data periodically.

YANG-Push mechanisms are used to select which data objects are of
interest using filters and provide frequent or prompt updates of
remote object state, thus allowing (client) applications to maintain
a continuous view of operational data and state and enabling a
network operator to optimize the system behavior across the whole
network to meet objectives and provide some performance guarantees
for network services.

Network management may rely upon one or multiple policies to
influence management behavior within the system and make sure
policies are enforced or executed correctly so that there will no
conflict in policies and that the observed behavior is the expected
one. Event-driven policy (i.e., ECA Policy [RFC8328]) enables
actions being automatically triggered based on when certain events in
the network occur while certain conditions hold. YANG Push
subscription provides a source for such events.

It is often the case that where Event Condition Action (ECA) is
defined is decoupled from where ECA is executed. ECA Engine in the
management system or the network device defines one or multiple
events corresponding to the workflow management, correlate these
events with action triggers and create ECA policy. ECA policy can be
enforced either at the management system or pushed to and executed by
the network device. Alternative, some of these predefined events can
be translated into filter in the YANG push subscription which is in
turn used to select data objects that are of interest. When these
data objects are streamed out to the destination, both the management
system and network device check for the condition when the event is
observed. If the condition is satisfied, the ECA script is executed.

Event-driven management (of states of managed objects) across a wide
range of devices can be used to monitor state changes of managed
objects or resource and automatic trigger of rules in response to
events so as to better service assurance for customers and to provide
rapid autonomic response that can exhibit self-management properties
including self-configuration, self-healing, self-optimization, and
self-protection.

This document provides a framework that describes the architecture
for supporting such event-driven management.

This document does not describe specific protocols or protocol

extensions needed to realize the objectives and capabilities
discussed in the document.

Boucadair, et al. Expires May 6, 2020 [Page 3]

Internet-Draft ECA Framework November 2019

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

2. Problem Statement
2.1. Defining Network Event and Network Control Logic

Datastores are used by network management protocols such as NETCONF
[REC6241] and RESTCONF [RFC8040]. Operational state data objects, in
the operational state datastore, provide network visibility to the
actual state of the network, and ensure the network is running
efficiently.

The network event are used to keep track of state of changes
associated with one of multiple operational state data objects in the
network device. Typical examples of network event include a fault,
an alarm, a change in network state, network security threat,
hardware malfunction, buffer utilization crossing a threshold,
network connection setup, and an external input to the system.

To control which state a network device should be in or is allowed to
be in at any given time, a set of conditions and actions are defined
and correlated with network events, which constitute an event-driven
policy or network control logic.

YANG Push subscription allows client applications to select which
datastore nodes are of interest and provides source of network
events. The NETCONF client can define event-based policy based on
YANG Push subscription data source or some other data source.

2.2. Delegating Network Control Logic to Network Device

Usually the NETCONF clients subscribe to continuous datastore updates
and rely on event notifications sent to the NETCONF client to check
for the condition so that reaction to many network events may be very
slow in the face of communication glitches between the client and the
sever. Such solution doesn’t scale well.

It is more desirable in many circumstances to delegate all event
response behaviors (e.g., recover from network failure, instruct the
network to control congestion) to the NETCONF server so that the
network can react to network change as quickly as the event is
detected.

Boucadair, et al. Expires May 6, 2020 [Page 4]

Internet-Draft ECA Framework November 2019

The event response behaviors delegation can be done using YANG push
subscription filter enhancements, e.g., define a new filter to allow
the NETCONF client send updates only when the value falls within a
certain range. Another example is to define a filter to allow the
NETCONF client send updates only when the value exceeds a certain
threshold for the first time but not again until the threshold is
cleared. In the latter case, additional state is required.

In addition, the event response behavior delegation can be done by
pushing ECA policy to the network device. Similar to YANG Push
subscription filter, the ECA approach also includes filter and
defines it as Event and Condition separately in the ECA policy model.
Different from using YANG Push subscription filter, ECA allow a group
of events to be observed, allow multiple actions to be triggered,
e.g., sending log report notification, add or remove multiple YANG
Push subscriptions.

2.3. Executing ECA Script in the Network Device

When the YANG Push subscription filter or ECA policy is pushed to the
server, the server is expected to register the event conveyed in the
YANG push subscription filter or Event-driven policy, generate server
specific script. With a server specific script, the server can
manipulate various network resources autonomously.

After the event registration, the server subscribes to its own
publications encapsulated in the event notification with respect to
all events that are associated with ECA Policy so that the
publication is intercepted and all events specified in the ECA policy
model are continuously monitored by the server before the publication
is encapsluated in the event notification and sent to the YANG Push
subscription’s client. At the moment of event detection, the server
loads the operational state data object filtered by the YANG Push
subscription’s filters or ECA policy into the auto-configured ECA’s
event and execute the ECA’s associated condition-action chain.

The condition is associated with an ECA event and evaluated only
within event threads triggered by the event detection, and the action
corresponds to a set of statements that may trigger state changes in
the device or publication content changes in the Event subscription
and could be various different operations to be carried out by the
server:

o Configuration data object reconfiguration;

o ECA Log report Notification;

o Add or remove one or multiple YANG Push Subscriptions;

Boucadair, et al. Expires May 6, 2020 [Page 5]

Internet-Draft ECA Framework November 2019

o Invoke another Event in the same network device or different
network device.

2.4. Event-Driven Notification Handling

ECA notifications are the only ECA actions that directly interact and
hence need to be unambiguously understood by the client.

ECA notification can be sent when the client may find any interesting
about the associated event with all the logic to compute said data
(e.g., datastore content changes history, median values), and
delegate computation task to the server via an ECA script.

When a "Send ECA notification" action is configured as an ECA Action,
the client may receive different ECA notification associated with the
same event or different events, YANG Push Publication will also be
sent through Event notification. Therefore it is important for
client to correlate of events and ECA notifications received from the
server.

When ECA notification and YANG Push Publication are both pushed to
the client, the client can execute client specific script generated
in the same way as the server does and manipulate various network
resources autonomously remotely. However the network resource can
not be manipulated twice in both client and the server. Therefore
policy conflict should be avoided or resolved.

2.5. Requisite State Information

A ECA policy rule is read as: When event occurs in a situation where
condition is true, then action is executed. The ECA associated state
is used to indicate when Events are triggered and what actions must
be performed on the occurrence of an event.

A simple information model for one piece of the ECA associated state
is as follows:

event name;

start time;

end time;

threshold value;

event occurrence times

The event that is observed could be a fault, an alarm, a change in
network state, network security threats, hardware malfunctions,

Boucadair, et al. Expires May 6, 2020 [Page 6]

Internet-Draft ECA Framework November 2019

buffer utilization exceeding a threshold. For any of the
aforementioned events, multiple actions may be triggered.

Architectural Concepts
.1. What is Defined in ECA Policy?

ECA Event 1s a change of datastore operational state. Each policy
rule consists of a set of conditions and a set of actions. Policy
rules may be aggregated into policy groups. These groups may be
nested, to represent a hierarchy of policies.

ECA Condition is evaluated to TRUE or FALSE logical expression. ECA
condition is specified as a hierarchy of comparisons and logical
combinations of thereof, which allows for configuring logical
hierarchies. One of ECA condition example is logical hierarchies
specified in a form of:

<target><relation><arg>

where target represent managed data object while arg represent either
constant/enum/identity, Policy variable or pointed by XPath data store
node or sub-tree,

relation is one of the comparison operations from the set: ==, !=,
>, <, >=, <=

Logical calculation between multiple trigger conditions:

The YANG language cannot clearly describe complex logical operations
between different condition lists under the same event, for example,
(condition A & condition B) or condition C.

By default, the ECA model performs logic "AND" operation between
different conditions in the same Event. That is, event is triggered
when different conditions are met at the same time. For example,

Event A consists of two conditions:

o Condition A;

o Condition B;

If Condition A AND Condition B is met;
Event A is triggered;

Action A is executed.

For the logic "OR" operation between different conditions, the
conditions can be defined in different events. If the corresponding
event is triggered, the same action is executed. For example,

Boucadair, et al. Expires May 6, 2020 [Page 7]

Internet-Draft ECA Framework November 2019

Event A is triggered on Condition A.
Event B is triggered on Condition B.
If Condition A is met;
Event A is triggered;
Action A is executed.
If Condition B is met;
Event B is triggered;
Action A is executed.

ECA Action is one of the following operations to be carried out by a
server:

o Configuration data object reconfiguration
o ECA Log report Notification
o Add or remove one or multiple YANG Push Subscriptions

o Invoke another Event in the same network device or different
network device

In case of one event triggering another event, a set of events can be
grouped together and executed, in a coordinated manner. The action
associated with the event can be executed in the same network device
or in different network devices. In the latter case, events executed
by different network devices need to coordinate as a group to fulfil
a task, previously set.

3.2. Where is ECA Script and State Held?

The ECA state information described in Section 2.5 and associated ECA
script has to be held somewhere. There are two locations where this
applies:

o 1in a central controller where decisions about resource adjustment
are made;

o 1n the network nodes where the resources exist.

The first of these locations have a good visibility of the whole
network or information of the flow packets are going to take through
the entire network, but requires a centralized, searchable repository
of all network information that can be used for diagnostics, service
assurance, maintenance or audit purposes. The response to network
event can be slow since all monitored data objects from large amount
of network devices need to be sent and correlated at the point where
decisions about resource adjustment are made, less alone multiple
network event triggering a single action.

Boucadair, et al. Expires May 6, 2020 [Page 8]

Internet-Draft ECA Framework November 2019

Conversely, if the ECA state and associated ECA script is held in the

network nodes, it makes policing of resource adjustment easier. It
means many points in the network can have immediate response to
network event. The limitation is the configurations and state of a

particular device does not have the visibility of the whole network
or information of the flow packets are going to take through the
entire network, so they provide little insight into network level
policy-related behavior.

3.3. What State is Held?

As already described, the network control logic associated with ECA
script needs access to ECA state table. It stores network events
pushed from YANG push subscription or ECA policy model, threshold
value it set for observed network management data object.

In addition, when the event needs to be continuously monitored, the
Event scheduling information such as start time, end time can be
included.

In case of sending updates only when the value exceeds a certain
threshold for the first time but not again until the threshold is
cleared, a threshold clear flag is also needed.

In case of monitoring the data change or data change rate, for
example, YANG Push On-Change mode [RFC8641] or ECA Threshold Test
[T.D-wwx—netmod-event-yang], the ECA state table need to store
history state to check the condition to be satisfied and determine
the current state.

4. Architecture Overview

The architectural considerations and conclusions described in the
previous section lead to the architecture described in this section
and illustrated in Figure 1. The interfaces and interactions shown
in the figure and labeled (a) through (f) are described in

Section 4.1.

Boucadair, et al. Expires May 6, 2020 [Page 9]

Internet-Draft ECA Framework November 2019

4.

1.

o +
|Management System Fommm +
e +ECA Script
| +-————————— e TR N +
| |[ECA Design| | Notif <—————————- t-——— +
|+-+-——+-———+ |Monitoring<---—+
e #rominole | |
e ————— = = +———— Fom +———+
(a) | |® | () (d) (e) () (e)
ECA | | YANG | |Event | Config Event
Model | |Push |Event |ECA |Notif| Model Notif
| | Sub |Notif |Notif
| |Filter | |
—————— b e
| | | | Network
et ——————— e F—— +———= V—+ +———— +——— +
e A |
|ECA Script+-———+
I B +
R + Network
+———=V-————t Device B
|ECA state]
- + Network Device A
R + Fm +

Figure 1.Reference Architecture for Use of ECA and Network Self
Management

Telemetry Automation in the Network Device

As shown in Figure 1, some component in the management system defines
and designs ECA Policy rule. This may be invoked by a Service
assurance application or device fault self-management application.

We show this component on the figure as the "ECA Design", and it
extracts Event and Condition in the ECA model and fill into YANG Push
Subscription as filter. When YANG Push subscription filter is pushed
down to the network device, ECA script can be generated automatically
from it (ECA script can also be generated in the management system
and downloaded to the network device). The YANG Push subscription
request, indicated on Figure 1 by the arrow (b), includes all of the
parameters of network management data objects that the requester
wishes to be supplied, such as filter node, threshold value, start
time, and end time. Note that the requester in this case may be the
management system shown in the figure or a distinct system such as
data collector.

The network device registers network event that is corresponding to
the filter carried in the YANG Push Subscription and enters the

Boucadair, et al. Expires May 6, 2020 [Page 10]

Internet-Draft ECA Framework November 2019

network event in its ECA state and then the server subscribes to its
own continuous datastore updates in the operational state datastore
that is encapsulated in the event notification as publication to the
YANG Push subscriber.

Upon the network event is detected, the server intercepts the
publication of subscribed data and loads the operational state data
object in the operational state datastore into the auto-configured
ECA’s event and execute the ECA’s associated condition. When ECA
Condition is evaluated to TRUE, the operational state data objects
will be filtered and the remaining data objects will be entered back
into the publication of subscribed data and encapsulated in the event
notification (c) and sent to notification monitoring component in the
management system.

The notification monitoring component may further derive some new ECA
policy rule and fed into ECA Design component. The remaining
procedure is same as the procedure starting from (b).

Alternatively, the ECA design component can push ECA model directly
with additional actions included (a) to the network device, ECA
script i1s generated automatically from ECA model. The ECA model
request, indicated on Figure 1 by the arrow (a), includes additional
action parameters besides one included in the YANG Push subscription
request.

The network device register network event that is corresponding to
the ECA carried in the ECA request and enter them in its ECA state
and then the server subscribes to its own continuous datastore

updates in the operational state datastore that is encapsulated in
the event notification as publication to the YANG Push subscriber.

Upon the network event is detected, the server loads the operational
state data object in the operational state datastore into the auto-
configured ECA’s event and execute the ECA’s associated condition.
Different from YANG Push subscription filter, the server will not
intercept the publication of subscribed data. Instead, it allows the
server to trigger a set of actions associated with the network event,
e.g., send ECA log report notification, add/remove YANG push
subscription, reconfigure the network management data object within
the control of the server. After all actions are executed, one or
multiple separate ECA notifications (d) can be sent to the
notification monitoring component in the management system, the
remaining procedure is same as YANG Push subscription case.

Conversely,when, network level policy-related behavior became

necessary, once a subscription has been set up, event notification
message associated with the subscription from different network

Boucadair, et al. Expires May 6, 2020 [Page 11]

Internet-Draft ECA Framework November 2019

device will be sent to the notification monitoring component in the
management system(e), which in turn trigger network behavior change
on the network device via configuration model (f).

4.2. Detecting and Resolving Policy Conflict
There are two possible places where policy conflict can take places:

1. An event triggers multiple actions in the network device that
cannot occur together as specified by the system administrator.

2. Multiple ECA notifications or multiple combination of ECA
notification and Event notification lead to generate ECA policy
that cannot occur together.

In both case, policy conflict can be addressed by policy conflict
detection mechanism and Policy validation mechanism.

4.3. Chain Reaction of Coordinated Events

In some cases events executed by the same or different network
devices can be executed in a coordinated manner. To make sure these
network devices coordinate on some task or a group of events
coordinate in the same network device, these events on the same or
different network devices need to be pre-configured to work together.
During capability negotiation phase, the management system should
know what each network device supports, which event may take action,
and what condition on which event. So ECA model with multiple events
can be configured on the network device to allow one event be
triggered by another event configured on the same network device.

5. Security Considerations
The framework described in this document for supporting autonomic
event-driven self-management will require consideration of potential
security and operational requirements, and ensure best security

practices and methods are applied.

Key security considerations that will be discussed in future versions
of this document, include:

o Authentication of ECA programming requests;

o Application of suitable authorization methods when enabling ECA
functions;

o Securing ECA communication channels;

Boucadair, et al. Expires May 6, 2020 [Page 12]

Internet-Draft ECA Framework November 2019

o Locking ECA device config and state databases;
o Mitigation, and negation, of ECA functional component attacks;
o Logging and auditing of ECA transactions;
o Maintaining ECA device confidentially.
6. Acknowledgements

This work has benefited from the discussions of ECA Policy over the
years. In particular, the SUPA project [
https://datatracker.ietf.org/wg/supa/about/] provided approaches to
express high-level, possibly network-wide policies to a network
management function (within a controller, an orchestrator, or a
network element) .

Igor Bryskin, Xufeng Liu, Alexander Clemm, Henk Birkholz, Tianran
Zhou contributed to an earlier version of [GNCA]. We would like to
thank the authors of that document on event response behaviors
delegation for material that assisted in thinking that helped develop
this document.

Finally, the authors would like to thank David Hutchison and Mehdi
Bezahaf at Lancaster University, Phil Eardley and Andy Reid at
British Telecom, for their input and applicability of ECA device self
management to the Next Generation Converged Digital Infrastructure
(NG-CDI) project.

7. References
7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[REC7950] Bijorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.

[REC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Boucadair, et al. Expires May 6, 2020 [Page 13]

Internet-Draft ECA Framework November 2019

[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc—editor.org/info/rfc8341>.

[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA) ", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.

7.2. Informative References

[I-D.bryskin-netconf-automation-yang]
Bryskin, I., Liu, X., Clemm, A., Birkholz, H., and T.
Zhou, "Generalized Network Control Automation YANG Model",
draft-bryskin-netconf-automation-yang-03 (work in
progress), July 2019.

[I-D.clemm-netmod-push-smart-filters]
Clemm, A., Voit, E., Liu, X., Bryskin, I., Zhou, T.,
Zheng, G., and H. Birkholz, "Smart Filters for Push
Updates", draft-clemm-netmod-push-smart-filters-01 (work
in progress), October 2018.

[I-D.clemm—nmrg-dist—-intent]
Clemm, A., Ciavaglia, L., Granville, L., and J. Tantsura,
"Intent-Based Networking - Concepts and Overview", draft-
clemm—nmrg-dist—-intent-02 (work in progress), July 2019.

[I-D.wwx—netmod-event-yang]
Wang, Z., WU, Q., Xie, C., Bryskin, I., Liu, X., Clemm,
A., Birkholz, H., and T. Zhou, "A YANG Data model for ECA
Policy Management", draft-wwx—-netmod-event-yang-04 (work
in progress), November 2019.

[RFC8328] Liu, W., Xie, C., Strassner, J., Karagiannis, G., Klyus,
M., Bi, J., Cheng, Y., and D. Zhang, "Policy-Based
Management Framework for the Simplified Use of Policy
Abstractions (SUPA)", RFC 8328, DOI 10.17487/RFC8328,
March 2018, <https://www.rfc-editor.org/info/rfc8328>.

[RFC8572] Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
Touch Provisioning (SzZTP)", RFC 8572,
DOI 10.17487/RFC8572, April 2019,
<https://www.rfc-editor.org/info/rfc8572>.

Boucadair, et al. Expires May 6, 2020 [Page 14]

Internet-Draft ECA Framework November 2019

Authors’ Addresses

Mohamed Boucadair
Orange

Rennes 35000
France

Email: mohamed.boucadair@Qorange.com

Qin Wu

Huaweil

101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012

China

Email: bill.wu@huawei.com

Michael Wang

Huawei

101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012

China

Email: wangzitaoQhuawei.com
Daniel King

Lancaster University
Bailrigg, Lancaster LAl 4YW
UK

Email: d.king@lancaster.ac.uk
Chongfeng Xie

China Telecom

Beijing

China

Email: xiechf.bri@chinatelecom.cn

Boucadair, et al. Expires May 6, 2020 [Page 15]

