
OPSAWG B. Claise
Internet-Draft J. Quilbeuf
Intended status: Informational Cisco Systems, Inc.
Expires: May 6, 2020 November 3, 2019

 Service Assurance for Intent-based Networking Architecture
 draft-claise-opsawg-service-assurance-architecture-00

Abstract

 This document describes the architecture for Service Assurance for
 Intent-based Networking (SAIN). This architecture aims at assuring
 that service instances are correctly running. As services rely on
 multiple sub-services by the underlying network devices, getting the
 assurance of a healthy service is only possible with a holistic view
 of network devices. This architecture not only helps to correlate
 the service degradation with the network root cause but also the
 impacted services impacted when a network component fails or
 degrades.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Claise & Quilbeuf Expires May 6, 2020 [Page 1]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology . 2
 2. Introduction . 4
 3. Architecture . 5
 3.1. Decomposing a Service Instance Configuration into an
 Assurance Tree . 7
 3.2. Intent and Assurance Tree 9
 3.3. Subservices . 9
 3.4. Building the Expression Tree from the Assurance Tree . . 10
 3.5. Building the Expression from a Subservice 10
 3.6. Open Interfaces with YANG Modules 10
 4. Security Considerations 11
 5. IANA Considerations . 11
 6. Open Issues . 11
 7. References . 11
 7.1. Normative References 11
 7.2. Informative References 11
 Appendix A. Changes between revisions 12
 Acknowledgements . 12
 Authors’ Addresses . 12

1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Agent (SAIN Agent): Component that communicates with a device, a set
 of devices, or another agent to build an expression tree from a
 received assurance tree and perform the corresponding computation.

 Assurance Tree: DAG representing the assurance case for one or
 several service instances. The nodes are the service instances
 themselves and the subservices, the edges indicate a dependency
 relations.

 Collector (SAIN collector): Component that fetches the computer-
 consumable output of the agent(s) and displays it in a user friendly
 form or process it locally.

Claise & Quilbeuf Expires May 6, 2020 [Page 2]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 DAG: Directed Acyclic Graph.

 ECMP: Equal Cost Multiple Paths

 Expression Tree: Generic term for a DAG representing a computation in
 SAIN. More specific terms are:

 o Subservice Expressions: expression tree representing all the
 computations to execute for a subservice.

 o Service Expressions: expression tree representing all the
 computations to execute for a service instance, i.e. including the
 computations for all dependent subservices.

 o Global Computation Forest: expression tree representing all the
 computations to execute for all services instances in an instance
 of SAIN (i.e. all computations performed within an instance of
 SAIN).

 Impacting Dependency: Type of dependency in the assurance tree. The
 status of the dependency is completely taken into account by the
 dependent service instance or subservice.

 Informational Dependency: Type of dependency in the assurance tree.
 Only the symptoms (i.e. for informational reasons) are taken into
 account in the dependent service instance or subservice. In
 particular, the score is not taken into account.

 Metric: Information retrieved from a network device.

 Metric Engine: Maps metrics to a list of candidate metric
 implementations depending on the target model.

 Metric Implementation: Actual way of retrieving a metric from a
 device.

 Network Service YANG Module: describes the characteristics of
 service, as agreed upon with consumers of that service [RFC8199].

 Service Instance: A specific instance of a service.

 Orchestrator (SAIN Orchestrator): Component of SAIN in charge of
 fetching the configuration specific to each service instance and
 converting it into an assurance tree.

 Health status: Score and symptoms indicating whether a service
 instance or a subservice is heathy. A non-maximal score MUST always
 be explained by one or more symptoms.

Claise & Quilbeuf Expires May 6, 2020 [Page 3]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 Subservice: Part of an assurance tree that assures a specific feature
 or subpart of the network system.

 Symptom: Reason explaining why a service instance or a subservice is
 not completely healthy.

2. Introduction

 Network Service YANG Modules [RFC8199] describe the configuration,
 state data, operations, and notifications of abstract representations
 of services implemented on one or multiple network elements.

 Quoting RFC8199: "Network Service YANG Modules describe the
 characteristics of a service, as agreed upon with consumers of that
 service. That is, a service module does not expose the detailed
 configuration parameters of all participating network elements and
 features but describes an abstract model that allows instances of the
 service to be decomposed into instance data according to the Network
 Element YANG Modules of the participating network elements. The
 service-to-element decomposition is a separate process; the details
 depend on how the network operator chooses to realize the service.
 For the purpose of this document, the term "orchestrator" is used to
 describe a system implementing such a process.""

 In other words, orchestrators deploy Network Service YANG Modules
 through the configuration of Network Element YANG Modules. Network
 configuration is based on those YANG data models, with protocol/
 encoding such as NETCONF/XML [RFC6241] , RESTCONF/JSON [RFC8040],
 gNMI/gRPC/protobuf, etc. Knowing that a configuration is applied
 doesn’t imply that the service is running correctly (for example the
 service might be degraded because of a failure in the network), the
 network operator must monitor the service operational data at the
 same time as the configuration. The industry has been standardizing
 on telemetry to push network element performance information.

 A network administrator needs to monitor her network and services as
 a whole, independently of the use cases or the management protocols.
 With different protocols come different data models, and different
 ways to model the same type of information. When network
 administrators deal with multiple protocols, the network management
 must perform the difficult and time-consuming job of mapping data
 models: the model used for configuration with the model used for
 monitoring. This problem is compounded by a large, disparate set of
 data sources (MIB modules, YANG models [RFC7950], IPFIX information
 elements [RFC7011], syslog plain text [RFC3164], TACACS+
 [I-D.ietf-opsawg-tacacs], RADIUS [RFC2138], etc.). In order to avoid
 this data model mapping, the industry converged on model-driven
 telemetry to stream the service operational data, reusing the YANG

Claise & Quilbeuf Expires May 6, 2020 [Page 4]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 models used for configuration. Model-driven telemetry greatly
 facilitates the notion of closed-loop automation whereby events from
 the network drive remediation changes back into the network.

 However, it proves difficult for network operators to correlate the
 service degradation with the network root cause. For example, why
 does my L3VPN fail to connect? Why is this specific service slow?
 The reverse, i.e. which services are impacted when a network
 component fails or degrades, is even more interesting for the
 operators. For example, which service(s) is(are) impacted when this
 specific optic dBM begins to degrade? Which application is impacted
 by this ECMP imbalance? Is that issue actually impacting any other
 customers?

 Intent-based approaches are often declarative, starting from a
 statement of the "The service works correctly" and trying to enforce
 it. Such approaches are mainly suited for greenfield deployments.

 Instead of approaching intent from a declarative way, this framework
 focuses on already defined services and tries to infer the meaning of
 "The service works correctly". To do so, the framework works from an
 assurance tree, deduced from the service definition and from the
 network configuration. This assurance tree is decomposed into
 components, which are then assured independently. The root of the
 assurance tree represents the service to assure, and its children
 represent components identified as its direct dependencies; each
 component can have dependencies as well.

 When a service is degraded, the framework will highlight where in the
 assurance service tree to look, as opposed to going hop by hop to
 troubleshoot the issue. Not only can can this framework help to
 correlate service degradation with network root cause/symptoms, but
 it can deduce from the assurance tree the number and type of services
 impacted by a component degradation/failure. This added value
 informs the operational team where to focus its attention for maximum
 return.

3. Architecture

 SAIN aims at assuring that service instances are correctly running.
 The goal of SAIN is to assure that service instances are operating
 correctly and if not, to pinpoint what is wrong. More precisely,
 SAIN computes a score for each service instance and outputs symptoms
 explaining that score, especially why the score is not maximal. The
 score augmented with the symptoms is called the health status

 As an example of a service, let us consider a point-to-point L2VPN
 connection (i.e. pseudowire). Such a service would take as

Claise & Quilbeuf Expires May 6, 2020 [Page 5]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 parameters the two ends of the connection (device, interface or
 subinterface, and address of the other end) and configure both
 devices (and maybe more) so that a L2VPN connection is established
 between the two devices. Examples of symptoms might be "Interface
 has high error rate" or "Interface flapping", or "Device almost out
 of memory".

 The overall architecture of our solution is presented in Figure 1.
 The assurance tree along some other configuration options is sent to
 the SAIN agents who are responsible for building the expression tree
 and computing the statuses in a distributed manner. The collector is
 in charge of collecting and displaying the current status of the
 assured service instances.

 Network +-----------------+ +-------------------+
 Service --------> | (SAIN) | | (SAIN) |
 Instance | Orchestrator | | Collector |
 Configuration +-----------------+ +-------------------+
 | ^
 | Configuration | health Status
 | (assurance tree) | (score + symptoms)
 V | streamed
 +-------------------+ | via telemetry
 |+-------------------+ |
 ||+-------------------+ |
 +|| (SAIN) |---------+
 +| agent |
 +-------------------+
 ^ ^ ^
 | | |
 | | | Metric Collection
 V V V
 +---+
 | Network |
 | |
 +---+

 Figure 1: SAIN Architecture

 In order to produce the score assigned to a service instance, the
 architecture performs the following tasks:

 o Analyze the configuration pushed to the network device(s) for
 configuring the service instance and decide: which information is

Claise & Quilbeuf Expires May 6, 2020 [Page 6]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 needed from the device(s), such a piece of information being
 called a metric, which operations to apply to the metrics for
 computing the health status.

 o Stream (via telemetry [RFC8641]) operational and config metric
 values when possible, else continuously fetch.

 o Continuously compute the health status of the service instances,
 based on the metric values.

 As said above, the goal of SAIN is to produce a health status for
 each service instance to assure, by collecting some metrics and
 applying operations on them. To meet that goal, the service is
 decomposed into an assurance tree formed by subservices linked
 through dependencies. Each subservice is then turned into
 expressions that are combined according to the dependencies between
 the subservices in order to obtain the expression tree which details
 how to fetch the metrics and how to compute the health status for
 each service instances. The expression tree is then implemented by
 the SAIN agents. The architecture also exports the health status of
 each subservice.

3.1. Decomposing a Service Instance Configuration into an Assurance
 Tree

 In order to structure the assurance of a service instance, the
 service instance is decomposed into so-called subservices. Each
 subservice focuses on a specific feature or subpart of the network
 system.

 The decomposition into subservices is at the heart of this
 architecture, for the following reasons.

 o The result of this decomposition is the assurance case of a
 service instance, that can be represented is as a graph (called
 assurance tree) to the operator.

 o Subservices provide a scope for particular expertise and thereby
 enable contribution from external experts. For instance, the
 subservice dealing with the optics health should be reviewed and
 extended by an expert in optical interfaces.

 o Subservices that are common to several service instances are
 reused for reducing the amount of computation needed.

 The assurance tree of a service instance is a DAG representing the
 structure of the assurance case for the service instance. The nodes
 of this graph are service instances or subservice instances. Each

Claise & Quilbeuf Expires May 6, 2020 [Page 7]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 edge of this graph indicates a dependency between the two nodes at
 its extremities: the service or subservice at the source of the edge
 depends on the service or subservice at the destination of the edge.

 Figure 2 depicts a simplistic example of the assurance tree for a
 tunnel service. The node at the top is the service instance, the
 nodes below are its dependencies. In the example, the tunnel service
 instance depends on the peer1 and peer2 tunnel interfaces, which in
 turn depend on the respective physical interfaces, which finally
 depend on the respective peer1 and peer2 devices. The tunnel service
 instance also depends on the IP connectivity that depends on the IS-
 IS routing protocol.

 +------------------+
 | Tunnel |
 | Service Instance |
 +-----------------+
 |
 +-------------------+-------------------+
 | | |
 +-------------+ +-------------+ +--------------+
 | Peer1 | | Peer2 | | IP |
 | Tunnel | | Tunnel | | Connectivity |
 | Interface | | Interface | | |
 +-------------+ +-------------+ +--------------}
 | | |
 +-------------+ +-------------+ +-------------+
 | Peer1 | | Peer2 | | IS-IS |
 | Physical | | Physical | | Routing |
 | Interface | | Interface | | Protocol |
 +-------------+ +-------------+ +-------------+
 | |
 +-------------+ +-------------+
 | | | |
 | Peer1 | | Peer2 |
 | Device | | Device |
 +-------------+ +-------------+

 Figure 2: Assurance Tree Example

 Depicting the assurance tree helps the operator to understand (and
 assert) the decomposition. The assurance tree shall be maintained
 during normal operation with addition, modification and removal of
 service instances. A change in the network configuration or topology
 shall be reflected in the assurance tree. As a first example, a
 change of routing protocol from IS-IS to OSPF would change the

Claise & Quilbeuf Expires May 6, 2020 [Page 8]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 assurance tree accordingly. As a second example, assuming that ECMP
 is in place for the source router for that specific tunnel; in that
 case, multiple interfaces must now be monitored, on top of the
 monitoring the ECMP health itself.

3.2. Intent and Assurance Tree

 The SAIN orchestrator analyzes the configuration of a service
 instance to:

 o Try to capture the intent of the service instance, i.e. what is
 the service instance trying to achieve,

 o Decompose the service instance into subservices representing the
 network features on which the service instance relies.

 The SAIN orchestrator must be able to analyze configuration from
 various devices and produce the assurance tree.

 To schematize what a SAIN orchestrator does, assume that the
 configuration for a service instance touches 2 devices and configure
 on each device a virtual tunnel interface. Then:

 o Capturing the intent would start by detecting that the service
 instance is actually a tunnel between the two devices, and stating
 that this tunnel must be functional. This is the current state of
 SAIN, however it does not completely capture the intent which
 might additionally include, for instance, on the latency and
 bandwidth requirements of this tunnel.

 o Decompose the service instance into subservices is what the
 assurance tree depicted in Figure 2 does.

 In order for SAIN to be applied, the configuration necessary for each
 service instance should be identifiable and thus should come from a
 "service-aware" source. While the figure 1 makes a distinction
 between the SAIN orchestrator and a different component providing the
 service instance configuration, in practice those two components are
 mostly likely combined. The internals of the orchestrator are
 currently out of scope of this standardization.

3.3. Subservices

 A subservice corresponds to subpart or a feature of the network
 system that is needed for a service instance to function properly.
 In the context of SAIN, subservice is actually a shortcut for
 subservice assurance, that is the method for assuring that a
 subservice behaves correctly.

Claise & Quilbeuf Expires May 6, 2020 [Page 9]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 A subservice is characterized by a list of metrics to fetch and a
 list of computations to apply to these metrics in order to produce a
 health status. Subservices, as services, have high-level parameters
 which defines which object should be assured.

3.4. Building the Expression Tree from the Assurance Tree

 From the assurance tree is derived a so-called expression tree, which
 is actually a DAG whose sources are constants or metrics and other
 nodes are operators. The expression tree encodes all the operations
 needed to produce heath statuses from the collected metrics.

 Subservices shall be device independent. To justify this, let’s
 consider the interface operational status. Dependending on the
 device capabilities, this status can be collected by an industry-
 accepted YANG module (IETF, Openconfig), by a vendor-specific YANG
 module, or even by a MIB module. If the subservice was dependent on
 the mechanism to collect the operational status, then we would need
 multiple subservice definitions in order to support all different
 mechanisms.

 In order to keep subservices independent from metric collection
 method, or, expressed differently, to support multiple combinations
 of platforms, OSes, and even vendors, the framework introduces the
 concept of "metric engine". The metric engine maps each device-
 independent metric used in the subservices to a list of device-
 specific metric implementations that precisely define how to fetch
 values for that metric. The mapping is parameterized by the
 characteristics (model, OS version, etc.) of the device from which
 the metrics are fetched.

3.5. Building the Expression from a Subservice

 Additionally, to the list of metrics, each subservice defines a list
 of expressions to apply on the metrics in order to compute the health
 status of the subservice. The definition or the standardization of
 those expressions (also known as heuristic) is currently out of scope
 of this standardization.

3.6. Open Interfaces with YANG Modules

 The interfaces between the architecture components are open thanks to
 YANG module(I-D.claise-opsawg-service-assurance-yang) defines objects
 for assuring network services based on their decomposition into so-
 called subservices, according to the SAIN architecture.

 This module is intended for the following use cases:

Claise & Quilbeuf Expires May 6, 2020 [Page 10]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 o Assurance tree configuration:

 * Subservices: configure a set of subservices to assure, by
 specifying their types and parameters.

 * Dependencies: configure the dependencies between the
 subservices, along with their type.

 o Assurance telemetry: export the health status of the subservices,
 along with the observed symptoms.

4. Security Considerations

 TO BE COMPLETED

5. IANA Considerations

 This document includes no request to IANA.

6. Open Issues

 -Security Considerations to be completed

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [I-D.ietf-opsawg-tacacs]
 Dahm, T., Ota, A., dcmgash@cisco.com, d., Carrel, D., and
 L. Grant, "The TACACS+ Protocol", draft-ietf-opsawg-
 tacacs-15 (work in progress), September 2019.

 [RFC2138] Rigney, C., Rubens, A., Simpson, W., and S. Willens,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2138, DOI 10.17487/RFC2138, April 1997,
 <https://www.rfc-editor.org/info/rfc2138>.

Claise & Quilbeuf Expires May 6, 2020 [Page 11]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 [RFC3164] Lonvick, C., "The BSD Syslog Protocol", RFC 3164,
 DOI 10.17487/RFC3164, August 2001,
 <https://www.rfc-editor.org/info/rfc3164>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
 Classification", RFC 8199, DOI 10.17487/RFC8199, July
 2017, <https://www.rfc-editor.org/info/rfc8199>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

Appendix A. Changes between revisions

 v00 - v01

 o Placeholder for next version.

Acknowledgements

 The authors would like to thank ...

Authors’ Addresses

Claise & Quilbeuf Expires May 6, 2020 [Page 12]

Internet-DraftService Assurance for Intent-based NetworkingNovember 2019

 Benoit Claise
 Cisco Systems, Inc.
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium

 Email: bclaise@cisco.com

 Jean Quilbeuf
 Cisco Systems, Inc.
 1, rue Camille Desmoulins
 92782 Issy Les Moulineaux
 France

 Email: jquilbeu@cisco.com

Claise & Quilbeuf Expires May 6, 2020 [Page 13]

