
TEEP WG D. Thaler

Internet-Draft Microsoft

Intended status: Informational March 05, 2019

Expires: September 6, 2019

 HTTP Transport for the Open Trust Protocol (OTrP)

 draft-thaler-teep-otrp-over-http-01

Abstract

 This document specifies the HTTP transport for the Open Trust

 Protocol (OTrP), which is used to manage code and configuration data

 in a Trusted Execution Environment (TEE). An implementation of this

 document can run outside of any TEE, but interacts with an OTrP

 implementation that runs inside a TEE.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Thaler Expires September 6, 2019 [Page 1]

Internet-Draft OTrP HTTP Transport March 2019

Table of Contents

 1. Introduction . 2

 2. Terminology . 3

 3. Use of Abstract APIs . 3

 4. Use of HTTP as a Transport 3

 5. Client Broker Behavior 4

 5.1. Receiving a request to install a new Trusted Application 4

 5.1.1. Session Creation 5

 5.2. Getting a message buffer back from an OTrP Agent 5

 5.3. Receiving an HTTP response 6

 5.4. Handling checks for policy changes 6

 5.5. Error handling . 7

 6. Server Broker Behavior 7

 6.1. Receiving an HTTP POST request 7

 6.2. Getting an empty buffer back from the TAM 7

 6.3. Getting a message buffer from the TAM 7

 6.4. Error handling . 7

 7. Sample message flow . 7

 8. Security Considerations 9

 9. IANA Considerations . 10

 10. References . 11

 10.1. Normative References 11

 10.2. Informative References 11

 Author’s Address . 12

1. Introduction

 Trusted Execution Environments (TEEs), including Intel SGX, ARM

 TrustZone, Secure Elements, and others, enforce that only authorized

 code can execute within the TEE, and any memory used by such code is

 protected against tampering or disclosure outside the TEE. The Open

 Trust Protocol (OTrP) is designed to provision authorized code and

 configuration into TEEs.

 To be secure against malware, an OTrP implementation (referred to as

 an OTrP "Agent" on the client side, and a "Trusted Application

 Manager (TAM)" on the server side) must themselves run inside a TEE.

 However, the transport for OTrP, along with typical networking

 stacks, need not run inside a TEE. This split allows the set of

 highly trusted code to be kept as small as possible, including

 allowing code (e.g., TCP/IP) that only sees encrypted messages to be

 kept out of the TEE.

 The OTrP specification [I-D.ietf-teep-opentrustprotocol] describes

 the behavior of OTrP Agents and TAMs, but does not specify the

 details of the transport, an implementation of which is referred to

 as a "Broker". The purpose of this document is to provide such

Thaler Expires September 6, 2019 [Page 2]

Internet-Draft OTrP HTTP Transport March 2019

 details. That is, the HTTP transport for OTrP is implemented in a

 Broker (typically outside a TEE) that delivers messages up to an OTrP

 implementation, and accepts messages from the OTrP implementation to

 be sent over a network.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 This document also uses various terms defined in

 [I-D.ietf-teep-architecture], including Trusted Execution Environment

 (TEE), Trusted Application (TA), Trusted Application Manager (TAM),

 Agent, and Broker.

3. Use of Abstract APIs

 This document refers to various APIs between a Broker and an OTrP

 implementation in the abstract, meaning the literal syntax and

 programming language are not specified, so that various concrete APIs

 can be designed (outside of the IETF) that are compliant.

 It is common in some TEE architectures (e.g., SGX) to refer to calls

 into a Trusted Application (TA) as "ECALLs" (or enclave-calls), and

 calls out from a Trusted Application (TA) as "OCALLs" (or out-calls).

 In other TEE architectures, there may be no OCALLs, but merely data

 returned from calls into a TA. This document attempts to be agnostic

 as to the concrete API architecture. As such, abstract APIs used in

 this document will refer to calls into a TA as API calls, and will

 simply refer to "passing data" back out of the TA. A concrete API

 might pass data back via an OCALL or via data returned from an API

 call.

 This document will also refer to passing "no" data back out of a TA.

 In an OCALL-based architecture, this might be implemented by not

 making any such call. In a return-based architecture, this might be

 implemented by returning 0 bytes.

4. Use of HTTP as a Transport

 This document uses HTTP [I-D.ietf-httpbis-semantics] as a transport.

 When not called out explicitly in this document, all implementation

 recommendations in [I-D.ietf-httpbis-bcp56bis] apply to use of HTTP

 by OTrP.

Thaler Expires September 6, 2019 [Page 3]

Internet-Draft OTrP HTTP Transport March 2019

 Redirects MAY be automatically followed, and no additional request

 headers beyond those specified by HTTP need be modified or removed

 upon a following such a redirect.

 Content is not intended to be treated as active by browsers and so

 HTTP responses with content SHOULD have the following headers as

 explained in Section 4.12 of [I-D.ietf-httpbis-bcp56bis]:

 Content-Type: application/otrp+json

 Cache-Control: no-store

 X-Content-Type-Options: nosniff

 Content-Security-Policy: default-src ’none’

 Referrer-Policy: no-referrer

 Only the POST method is specified for TAM resources exposed over

 HTTP. A URI of such a resource is referred to as a "TAM URI". A TAM

 URI can be any HTTP(S) URI. The URI to use is configured in an OTrP

 Agent via an out-of-band mechanism, as discussed in the next section.

 When HTTPS is used, TLS certificates MUST be checked according to

 [RFC2818].

5. Client Broker Behavior

5.1. Receiving a request to install a new Trusted Application

 When the Broker receives a notification (e.g., from an application

 installer) that an application has a dependency on a given Trusted

 Application (TA) being available in a given type of TEE, the

 notification will contain the following:

 - A unique identifier of the TA

 - Optionally, any metadata to pass to the OTrP Agent. This might

 include a TAM URI provided in the application manifest, for

 example.

 - Optionally, any requirements that may affect the choice of TEE, if

 multiple are available to the Broker.

 When such a notification is received, the Broker first identifies in

 an implementation-dependent way which TEE (if any) is most

 appropriate based on the constraints expressed. If there is only one

 TEE, the choice is obvious. Otherwise, the choice might be based on

 factors such as capabilities of available TEE(s) compared with TEE

 requirements in the notification.

Thaler Expires September 6, 2019 [Page 4]

Internet-Draft OTrP HTTP Transport March 2019

 The Broker then informs the OTrP Agent in that TEE by invoking an

 appropriate "RequestTA" API that identifies the TA needed and any

 other associated metadata. The Broker need not know whether the TEE

 already has such a TA installed or whether it is up to date.

 The OTrP Agent will either (a) pass no data back, (b) pass back a TAM

 URI to connect to, or (c) pass back a message buffer and TAM URI to

 send it to. The TAM URI passed back may or may not be the same as

 the TAM URI, if any, provided by the broker, depending on the OTrP

 Agent’s configuration. If they differ, the Broker MUST use the TAM

 URI passed back.

5.1.1. Session Creation

 If no data is passed back, the Broker simply informs its client

 (e.g., the application installer) of success.

 If the OTrP Agent passes back a TAM URI with no message buffer, the

 TEEP Broker attempts to create session state, then sends an HTTP(S)

 POST to the TAM URI with an "Accept: application/otrp+json" header

 and an empty body. The HTTP request is then associated with the

 Broker’s session state.

 If the OTrP Agent instead passes back a TAM URI with a message

 buffer, the TEEP Broker attempts to create session state and handles

 the message buffer as specified in Section 5.2.

 Session state consists of:

 - Any context (e.g., a handle) that identifies the API session with

 the OTrP Agent.

 - Any context that identifies an HTTP request, if one is

 outstanding. Initially, none exists.

5.2. Getting a message buffer back from an OTrP Agent

 When a message buffer (and TAM URI) is passed to a Broker from an

 OTrP Agent, the Broker MUST do the following, using the Broker’s

 session state associated with its API call to the OTrP Agent.

 The Broker sends an HTTP POST request to the TAM URI with "Accept:

 application/otrp+json" and "Content-Type: application/otrp+json"

 headers, and a body containing the OTrP message buffer provided by

 the OTrP Agent. The HTTP request is then associated with the

 Broker’s session state.

Thaler Expires September 6, 2019 [Page 5]

Internet-Draft OTrP HTTP Transport March 2019

5.3. Receiving an HTTP response

 When an HTTP response is received in response to a request associated

 with a given session state, the Broker MUST do the following.

 If the HTTP response body is empty, the Broker’s task is complete,

 and it can delete its session state, and its task is done.

 If instead the HTTP response body is not empty, the Broker calls a

 "ProcessOTrPMessage" API (Section 6.2 of

 [I-D.ietf-teep-opentrustprotocol]) to pass the response body to the

 OTrP Agent associated with the session. The OTrP Agent will then

 pass no data back, or pass pack a message buffer.

 If no data is passed back, the Broker’s task is complete, and it can

 delete its session state, and inform its client (e.g., the

 application installer) of success.

 If instead the OTrP Agent passes back a message buffer, the TEEP

 Broker handles the message buffer as specified in Section 5.2.

5.4. Handling checks for policy changes

 An implementation MUST provide a way to periodically check for OTrP

 policy changes. This can be done in any implementation-specific

 manner, such as:

 A) The Broker might call into the OTrP Agent at an interval

 previously specified by the OTrP Agent. This approach requires that

 the Broker be capable of running a periodic timer.

 B) The Broker might be informed when an existing TA is invoked, and

 call into the OTrP Agent if more time has passed than was previously

 specified by the OTrP Agent. This approach allows the device to go

 to sleep for a potentially long period of time.

 C) The Broker might be informed when any attestation attempt

 determines that the device is out of compliance, and call into the

 OTrP Agent to remediate.

 The Broker informs the OTrP Agent by invoking an appropriate

 "RequestPolicyCheck" API. The OTrP Agent will either (a) pass no

 data back, (b) pass back a TAM URI to connect to, or (c) pass back a

 message buffer and TAM URI to send it to. Processing then continues

 as specified in Section 5.1.1.

Thaler Expires September 6, 2019 [Page 6]

Internet-Draft OTrP HTTP Transport March 2019

5.5. Error handling

 If any local error occurs where the Broker cannot get a message

 buffer (empty or not) back from the OTrP Agent, the Broker deletes

 its session state, and informs its client (e.g., the application

 installer) of a failure.

 If any HTTP request results in an HTTP error response or a lower

 layer error (e.g., network unreachable), the Broker calls the OTrP

 Agent’s "ProcessError" API, and then deletes its session state and

 informs its client of a failure.

6. Server Broker Behavior

6.1. Receiving an HTTP POST request

 When an HTTP POST request is received with an empty body, the Broker

 invokes the TAM’s "ProcessConnect" API. The TAM will then pass back

 a (possibly empty) message buffer.

 When an HTTP POST request is received with a non-empty body, the

 Broker calls the TAM’s "ProcessOTrPMessage" API to pass it the

 request body. The TAM will then pass back a (possibly empty) message

 buffer.

6.2. Getting an empty buffer back from the TAM

 If the TAM passes back an empty buffer, the Broker sends a successful

 (2xx) response with no body.

6.3. Getting a message buffer from the TAM

 If the TAM passes back a non-empty buffer, the Broker generates a

 successful (2xx) response with a "Content-Type: application/

 otrp+json" header, and with the message buffer as the body.

6.4. Error handling

 If any error occurs where the Broker cannot get a message buffer

 (empty or not) back from the TAM, the Broker generates an appropriate

 HTTP error response.

7. Sample message flow

 1. An application installer determines (e.g., from an app manifest)

 that the application has a dependency on TA "X", and passes this

 notification to the Client Broker. The Client Broker picks an

Thaler Expires September 6, 2019 [Page 7]

Internet-Draft OTrP HTTP Transport March 2019

 OTrP Agent (e.g., the only one available) based on this

 notification.

 2. The Client Broker calls the OTrP Agent’s "RequestTA" API,

 passing TA Needed = X.

 3. The OTrP Agent finds that no such TA is already installed, but

 that it can be obtained from a given TAM. The OTrP Agent passes

 the TAM URI (e.g., "https://example.com/tam") to the Client

 Broker. (If the OTrP Agent already had a cached TAM certificate

 that it trusts, it could skip to step 9 instead and generate a

 GetDeviceStateResponse.)

 4. The Client Broker sends an HTTP POST request to the TAM URI:

 POST /tam HTTP/1.1

 Host: example.com

 Accept: application/otrp+json

 Content-Length: 0

 User-Agent: Foo/1.0

 5. The Server Broker receives the HTTP POST request, and calls the

 TAM’s "ProcessConnect" API.

 6. The TAM generates an OTrP message (typically

 GetDeviceStateRequest is the first message) and passes it to the

 Server Broker.

 7. The Server Broker sends an HTTP successful response with the

 OTrP message in the body:

 HTTP/1.1 200 OK

 Content-Type: application/otrp+json

 Content-Length: [length of OTrP message here]

 Server: Bar/2.2

 Cache-Control: no-store

 X-Content-Type-Options: nosniff

 Content-Security-Policy: default-src ’none’

 Referrer-Policy: no-referrer

 [OTrP message here]

Thaler Expires September 6, 2019 [Page 8]

Internet-Draft OTrP HTTP Transport March 2019

 8. The Client Broker gets the HTTP response, extracts the OTrP

 message and calls the OTrP Agent’s "ProcessOTrPMessage" API to

 pass it the message.

 9. The OTrP Agent processes the OTrP message, and generates an OTrP

 response (e.g., GetDeviceStateResponse) which it passes back to

 the Client Broker.

 10. The Client Broker gets the OTrP message buffer and sends an HTTP

 POST request to the TAM URI, with the OTrP message in the body:

 POST /tam HTTP/1.1

 Host: example.com

 Accept: application/otrp+json

 Content-Type: application/otrp+json

 Content-Length: [length of OTrP message here]

 User-Agent: Foo/1.0

 [OTrP message here]

 11. The Server Broker receives the HTTP POST request, and calls the

 TAM’s "ProcessOTrPMessage" API.

 12. Steps 6-11 are then repeated until the TAM passes no data back

 to the Server Broker in step 6.

 13. The Server Broker sends an HTTP successful response with no

 body:

 HTTP/1.1 204 No Content

 Server: Bar/2.2

 14. The Client Broker deletes its session state.

8. Security Considerations

 Although OTrP is protected end-to-end inside of HTTP, there is still

 value in using HTTPS for transport, since HTTPS can provide

 additional protections as discussed in Section 6 of

 [I-D.ietf-httpbis-bcp56bis]. As such, Broker implementations MUST

 support HTTPS. The choice of HTTP vs HTTPS at runtime is up to

 policy, where an administrator configures the TAM URI to be used, but

 it is expected that real deployments will always use HTTPS TAM URIs.

Thaler Expires September 6, 2019 [Page 9]

Internet-Draft OTrP HTTP Transport March 2019

9. IANA Considerations

 [[NOTE: This section should probably be moved to the OTrP spec.]]

 This section requests that IANA assign the "application/otrp+json"

 media type.

 Type name: application

 Subtype name: otrp+json

 Required parameters: none

 Optional parameters: none

 Encoding considerations: Same as encoding considerations of

 application/json as specified in Section 11 of [RFC7159].

 Security considerations: See Section 12 of [RFC7159] and Section 8 of

 this document.

 Interoperability considerations: Same as interoperability

 considerations of application/json as specified in [RFC7159].

 Published specification: [I-D.ietf-teep-opentrustprotocol]

 Applications that use this media type: OTrP implementations.

 Fragment identifier considerations: N/A

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person & email address to contact for further information:

 teep@ietf.org

 Intended usage: COMMON

 Restrictions on usage: none

 Author: See the "Authors’ Addresses" section of this document.

 Change controller: IETF

Thaler Expires September 6, 2019 [Page 10]

Internet-Draft OTrP HTTP Transport March 2019

10. References

10.1. Normative References

 [I-D.ietf-httpbis-semantics]

 Fielding, R., Nottingham, M., and J. Reschke, "HTTP

 Semantics", draft-ietf-httpbis-semantics-03 (work in

 progress), October 2018.

 [I-D.ietf-teep-opentrustprotocol]

 Pei, M., Atyeo, A., Cook, N., Yoo, M., and H. Tschofenig,

 "The Open Trust Protocol (OTrP)", draft-ietf-teep-

 opentrustprotocol-02 (work in progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

 editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,

 DOI 10.17487/RFC2818, May 2000, <https://www.rfc-

 editor.org/info/rfc2818>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [I-D.ietf-httpbis-bcp56bis]

 Nottingham, M., "Building Protocols with HTTP", draft-

 ietf-httpbis-bcp56bis-08 (work in progress), November

 2018.

 [I-D.ietf-teep-architecture]

 Pei, M., Tschofenig, H., Wheeler, D., Atyeo, A., and D.

 Liu, "Trusted Execution Environment Provisioning (TEEP)

 Architecture", draft-ietf-teep-architecture-01 (work in

 progress), October 2018.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data

 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March

 2014, <https://www.rfc-editor.org/info/rfc7159>.

Thaler Expires September 6, 2019 [Page 11]

Internet-Draft OTrP HTTP Transport March 2019

Author’s Address

 David Thaler

 Microsoft

 EMail: dthaler@microsoft.com

Thaler Expires September 6, 2019 [Page 12]

