
TEEP M. Pei
Internet-Draft Symantec
Intended status: Informational A. Atyeo
Expires: November 16, 2019 Intercede
 N. Cook
 ARM Ltd.
 M. Yoo
 IoTrust
 H. Tschofenig
 ARM Ltd.
 May 15, 2019

 The Open Trust Protocol (OTrP)
 draft-ietf-teep-opentrustprotocol-03.txt

Abstract

 This document specifies the Open Trust Protocol (OTrP), a protocol
 that follows the Trust Execution Environment Provisioning (TEEP)
 architecture and provides a message protocol that provisions and
 manages Trusted Applications into a device with a Trusted Execution
 Environment (TEE).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 16, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Pei, et al. Expires November 16, 2019 [Page 1]

Internet-Draft OTrP May 2019

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 5
 2. Requirements Language . 6
 3. Terminology . 6
 3.1. Definitions . 6
 3.2. Abbreviations . 6
 4. OTrP Entities and Trust Model 6
 4.1. System Components . 6
 4.2. Trust Anchors in TEE 7
 4.3. Trust Anchors in TAM 7
 4.4. Keys and Certificate Types 7
 5. Protocol Scope and Entity Relations 10
 5.1. A Sample Device Setup Flow 12
 5.2. Derived Keys in The Protocol 12
 5.3. Security Domain Hierarchy and Ownership 13
 5.4. SD Owner Identification and TAM Certificate Requirements 13
 5.5. Service Provider Container 14
 6. OTrP Broker . 15
 6.1. Role of OTrP Broker 15
 6.2. OTrP Broker and Global Platform TEE Client API 16
 6.3. OTrP Broker Implementation Consideration 16
 6.3.1. OTrP Broker Distribution 16
 6.3.2. Number of OTrP Broker 16
 6.4. OTrP Broker Interfaces for Client Applications 17
 6.4.1. ProcessOTrPMessage call 17
 6.4.2. GetTAInformation call 17
 6.5. Sample End-to-End Client Application Flow 20
 6.5.1. Case 1: A New Client Application Uses a TA 20
 6.5.2. Case 2: A Previously Installed Client Application
 Calls a TA . 21
 7. OTrP Messages . 22
 7.1. Message Format . 22
 7.2. Message Naming Convention 22
 7.3. Request and Response Message Template 23
 7.4. Signed Request and Response Message Structure 23
 7.4.1. Identifying Signing and Encryption Keys for JWS/JWE
 Messaging . 25
 7.5. JSON Signing and Encryption Algorithms 25
 7.5.1. Supported JSON Signing Algorithms 27

Pei, et al. Expires November 16, 2019 [Page 2]

Internet-Draft OTrP May 2019

 7.5.2. Support JSON Encryption Algorithms 27
 7.5.3. Supported JSON Key Management Algorithms 27
 7.6. Common Errors . 28
 7.7. OTrP Message List . 28
 7.8. OTrP Request Message Routing Rules 29
 7.8.1. SP Anonymous Attestation Key (SP AIK) 29
 8. Transport Protocol Support 29
 9. Detailed Messages Specification 30
 9.1. GetDeviceState . 30
 9.1.1. GetDeviceStateRequest message 30
 9.1.2. Request processing requirements at a TEE 31
 9.1.3. Firmware Signed Data 32
 9.1.3.1. Supported Firmware Signature Methods 33
 9.1.4. Post Conditions 33
 9.1.5. GetDeviceStateResponse Message 33
 9.1.6. Error Conditions 38
 9.1.7. TAM Processing Requirements 39
 9.2. Security Domain Management 40
 9.2.1. CreateSD . 40
 9.2.1.1. CreateSDRequest Message 40
 9.2.1.2. Request Processing Requirements at a TEE 43
 9.2.1.3. CreateSDResponse Message 44
 9.2.1.4. Error Conditions 45
 9.2.2. UpdateSD . 46
 9.2.2.1. UpdateSDRequest Message 46
 9.2.2.2. Request Processing Requirements at a TEE 49
 9.2.2.3. UpdateSDResponse Message 51
 9.2.2.4. Error Conditions 52
 9.2.3. DeleteSD . 52
 9.2.3.1. DeleteSDRequest Message 53
 9.2.3.2. Request Processing Requirements at a TEE 55
 9.2.3.3. DeleteSDResponse Message 56
 9.2.3.4. Error Conditions 57
 9.3. Trusted Application Management 57
 9.3.1. InstallTA . 58
 9.3.1.1. InstallTARequest Message 59
 9.3.1.2. InstallTAResponse Message 61
 9.3.1.3. Error Conditions 62
 9.3.2. UpdateTA . 63
 9.3.2.1. UpdateTARequest Message 64
 9.3.2.2. UpdateTAResponse Message 66
 9.3.2.3. Error Conditions 67
 9.3.3. DeleteTA . 68
 9.3.3.1. DeleteTARequest Message 68
 9.3.3.2. Request Processing Requirements at a TEE 70
 9.3.3.3. DeleteTAResponse Message 70
 9.3.3.4. Error Conditions 71
 10. Response Messages a TAM May Expect 72

Pei, et al. Expires November 16, 2019 [Page 3]

Internet-Draft OTrP May 2019

 11. Basic Protocol Profile 73
 12. Attestation Implementation Consideration 73
 12.1. OTrP Trusted Firmware 74
 12.1.1. Attestation signer 74
 12.1.2. TFW Initial Requirements 74
 12.2. TEE Loading . 74
 12.3. Attestation Hierarchy 75
 12.3.1. Attestation Hierarchy Establishment: Manufacture . . 75
 12.3.2. Attestation Hierarchy Establishment: Device Boot . . 75
 12.3.3. Attestation Hierarchy Establishment: TAM 76
 13. IANA Considerations . 76
 13.1. Error Code List . 77
 13.1.1. TEE Signed Error Code List 77
 14. Security Consideration 78
 14.1. Cryptographic Strength 78
 14.2. Message Security . 79
 14.3. TEE Attestation . 79
 14.4. TA Protection . 79
 14.5. TA Personalization Data 80
 14.6. TA Trust Check at TEE 80
 14.7. One TA Multiple SP Case 81
 14.8. OTrP Broker Trust Model 81
 14.9. OCSP Stapling Data for TAM Signed Messages 81
 14.10. Data Protection at TAM and TEE 81
 14.11. Privacy Consideration 82
 14.12. Threat Mitigation 82
 14.13. Compromised CA . 83
 14.14. Compromised TAM . 83
 14.15. Certificate Renewal 83
 15. Acknowledgements . 83
 16. References . 84
 16.1. Normative References 84
 16.2. Informative References 84
 Appendix A. Sample Messages 85
 A.1. Sample Security Domain Management Messages 85
 A.1.1. Sample GetDeviceState 85
 A.1.1.1. Sample GetDeviceStateRequest 85
 A.1.1.2. Sample GetDeviceStateResponse 85
 A.1.2. Sample CreateSD 89
 A.1.2.1. Sample CreateSDRequest 89
 A.1.2.2. Sample CreateSDResponse 92
 A.1.3. Sample UpdateSD 93
 A.1.3.1. Sample UpdateSDRequest 94
 A.1.3.2. Sample UpdateSDResponse 95
 A.1.4. Sample DeleteSD 95
 A.1.4.1. Sample DeleteSDRequest 95
 A.1.4.2. Sample DeleteSDResponse 97
 A.2. Sample TA Management Messages 99

Pei, et al. Expires November 16, 2019 [Page 4]

Internet-Draft OTrP May 2019

 A.2.1. Sample InstallTA 99
 A.2.1.1. Sample InstallTARequest 99
 A.2.1.2. Sample InstallTAResponse 100
 A.2.2. Sample UpdateTA 102
 A.2.2.1. Sample UpdateTARequest 102
 A.2.2.2. Sample UpdateTAResponse 103
 A.2.3. Sample DeleteTA 106
 A.2.3.1. Sample DeleteTARequest 106
 A.2.3.2. Sample DeleteTAResponse 108
 A.3. Example OTrP Broker Option 110
 Appendix B. Contributors . 110
 Authors’ Addresses . 110

1. Introduction

 The Trusted Execution Environment (TEE) concept has been designed to
 separate a regular operating system, also referred as a Rich
 Execution Environment (REE), from security-sensitive applications.
 In an TEE ecosystem, different device vendors may use different TEE
 implementations. Different application providers or device
 administrators may choose to use different TAM providers. There
 calls for an interoperable protocol for managing TAs running in
 different TEEs of various devices is needed.

 The Trusted Execution Environment Provisioning (TEEP) architecture
 document [TEEPArch] has set to provide a design guidance for such an
 interoperable protocol. This document specifies an Open Trust
 Protocol (OTrP) that follows the architecture guidance.

 OTrP defines a mutual trust message protocol between a TAM and a TEE
 and relies on IETF-defined end-to-end security mechanisms, namely
 JSON Web Encryption (JWE), JSON Web Signature (JWS), and JSON Web Key
 (JWK). Other message encoding methods may be supported.

 This specification defines message payloads exchanged between devices
 and a TAM. The messages are designed in anticipation of the use of
 the most common transport methods such as HTTPS.

 Each TA binary and configuration data can be from either of two
 sources:

 1. A TAM supplies the signed and encrypted TA binary and any
 required configuration data

 2. A Client Application supplies the TA binary

 This specification considers the first case where TA binary and
 configuration data are encrypted by recipient’s public key that TAM

Pei, et al. Expires November 16, 2019 [Page 5]

Internet-Draft OTrP May 2019

 has to be involved. The second case will also be addressed
 separately.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology

3.1. Definitions

 The definitions provided below are defined as used in this document.
 All the terms defined in the TEEP Architecture document [TEEPArch]
 will be used, which are not repeated in this document.

 OTrP Broker: It is the Broker as defined in the TEEP Architecture
 document [TEEPArch].

3.2. Abbreviations

 CA Certificate Authority

 OTrP Open Trust Protocol

 REE Rich Execution Environment

 SD Security Domain

 SP Service Provider

 TA Trusted Application

 TEE Trusted Execution Environment

 TFW Trusted Firmware

 TAM Trusted Application Manager

4. OTrP Entities and Trust Model

4.1. System Components

 The same system components as defined in the TEEP Architecture
 document [TEEPArch] are used in OTrP, including TAM, CA, TEE, REE,
 and OTrP Broker (a.k.a Broker).

Pei, et al. Expires November 16, 2019 [Page 6]

Internet-Draft OTrP May 2019

 Secure boot (for the purposes of OTrP) is optional in enabling
 authenticity checking of TEEs by the TAM. A TAM provider can choose
 it policy whether it trusts a TEE if the underlying firmware
 attestation information is not included.

 OTrP uses trust anchors to establish trust between TEEs and TAMs and
 verifies that they communicate in a trusted way when performing
 lifecycle management transactions.

4.2. Trust Anchors in TEE

 This assumes the Trust Anchor specification defined in the TEEP
 Architecture document [TEEPArch].

 Each TEE comes with a trust store that contains a whitelist of root
 CA certificates that are used to validate a TAM’s certificate. A TEE
 will accept a TAM to create new Security Domains and install new TAs
 on behalf of a SP only if the TAM’s certificate is chained to one of
 the root CA certificates in the TEE’s trust store.

4.3. Trust Anchors in TAM

 The Trust Anchor set in a TAM consists of a list of Certificate
 Authority certificates that signs various device TEE certificates. A
 TAM decides what TEE and optionally TFW it will trust when TFW
 signature data is present in an attestation.

4.4. Keys and Certificate Types

 OTrP leverages the following list of trust anchors and identities in
 generating signed and encrypted command messages that are exchanged
 between a device’s TEE and a TAM. With these security artifacts,
 OTrP Messages are able to deliver end-to-end security without relying
 on any transport security.

Pei, et al. Expires November 16, 2019 [Page 7]

Internet-Draft OTrP May 2019

 +-------------+----------+--------+-------------------+-------------+
 | Key Entity | Location | Issuer | Trust Implication | Cardinality |
 | Name | | | | |
 +-------------+----------+--------+-------------------+-------------+
1. TFW key	Device	FW CA	A whitelist of FW	1 per
pair and	secure		root CA trusted	device
certificate	storage		by TAMs	
2. TEE key	Device	TEE CA	A whitelist of	1 per
pair and	TEE	under	TEE root CA	device
certificate		a root	trusted by TAMs	
		CA		
3. TAM key	TAM	TAM CA	A whitelist of	1 or
pair and	provider	under	TAM root CA	multiple
certificate		a root	embedded in TEE	can be used
		CA		by a TAM
4. SP key	SP	SP	TAM manages SP.	1 or
pair and		signer	TA trust is	multiple
certificate		CA	delegated to TAM.	can be used
			TEE trusts TAM to	by a TAM
			ensure that a TA	
			is trustworthy.	
 +-------------+----------+--------+-------------------+-------------+

 Table 1: Key and Certificate Types

 1. TFW key pair and certificate: A key pair and certificate for
 evidence of trustworthy firmware in a device. This key pair is
 optional. Some TEE may present its trusted attributes to a TAM
 using signed attestation with a TFW key. For example, a platform
 that uses a hardware based TEE can have attestation data signed
 by a hardware protected TFW key.

 Location: Device secure storage

 Supported Key Type: RSA and ECC

 Issuer: OEM CA

 Trust Implication: A whitelist of FW root CA trusted by TAMs

 Cardinality: One per device

 2. TEE key pair and certificate: It is used for device attestation
 to a remote TAM and SP.

Pei, et al. Expires November 16, 2019 [Page 8]

Internet-Draft OTrP May 2019

 This key pair is burned into the device at device manufacturer.
 The key pair and its certificate are valid for the expected
 lifetime of the device.

 Location: Device TEE

 Supported Key Type: RSA and ECC

 Issuer: A CA that chains to a TEE root CA

 Trust Implication: A whitelist of TEE root CA trusted by TAMs

 Cardinality: One per device

 3. TAM key pair and certificate: A TAM provider acquires a
 certificate from a CA that a TEE trusts.

 Location: TAM provider

 Supported Key Type: RSA and ECC.

 Supported Key Size: RSA 2048-bit, ECC P-256 and P-384. Other
 sizes should be anticipated in future.

 Issuer: TAM CA that chains to a root CA

 Trust Implication: A whitelist of TAM root CA embedded in TEE

 Cardinality: One or multiple can be used by a TAM

 4. SP key pair and certificate: an SP uses its own key pair and
 certificate to sign a TA.

 Location: SP

 Supported Key Type: RSA and ECC

 Supported Key Size: RSA 2048-bit, ECC P-256 and P-384. Other
 sizes should be anticipated in future.

 Issuer: an SP signer CA that chains to a root CA

 Trust Implication: TAM manages SP. TA trusts an SP by
 validating trust against a TAM that the SP uses. A TEE trusts
 TAM to ensure that a TA from the TAM is trustworthy.

 Cardinality: One or multiple can be used by an SP

Pei, et al. Expires November 16, 2019 [Page 9]

Internet-Draft OTrP May 2019

5. Protocol Scope and Entity Relations

 This document specifies messages and key properties that can
 establish mutual trust between a TEE and a TAM. The protocol
 provides specifications for the following three entities:

 1. Key and certificate types required for device firmware, TEEs,
 TAs, SPs, and TAMs

 2. Data message formats that should be exchanged between a TEE in a
 device and a TAM

 3. An OTrP Broker in the REE that can relay messages between a
 Client Application and TEE

 Figure 1: Protocol Scope and Entity Relationship

 PKI CA -- CA CA --
 | | |
 | | |
 | | |
 Device | | --- OTrP Broker / Client App --- |
 SW | | | | |
 | | | | |
 | | | | |
 OTrP | -- TEE TAM-------
 |
 |
 FW

 Figure 2: OTrP System Diagram

Pei, et al. Expires November 16, 2019 [Page 10]

Internet-Draft OTrP May 2019

 -------OTrP Message Protocol---
 | |
 | |
 -------------------- --------------- ----------
 | REE | TEE | | TAM | | SP | |
 | --- | --- | | --- | | -- |
 | | | | | | |
 | Client | SD (TAs)| | SD / TA | | TA |
 | Apps | | | Mgmt | | |
 | | | | | | | |
 | | | List of | | List of | | |
 | OTrP | Trusted | | Trusted | | |
 | Broker | TAM/SP | | FW/TEE | | |
 | | CAs | | CAs | | |
 | | | | | | |
 | |TEE Key/ | | TAM Key/ | | SP Key/|
 | | Cert | | Cert | | Cert |
 | | FW Key/ | | | | |
 | | Cert | | | | |
 -------------------- --------------- ----------
 | | |
 | | |
 ------------- ---------- ---------
 | TEE CA | | TAM CA | | SP CA |
 ------------- ---------- ---------

 In the previous diagram, different Certificate Authorities can be
 used respectively for different types of certificates. OTrP Messages
 are always signed, where the signer keys is the message creator’s
 private key such as a FW’s private key, a TEE’s private key, or a
 TAM’s private key.

 The main OTrP component consists of a set of standard JSON messages
 created by a TAM to deliver device SD and TA management commands to a
 device, and device attestation and response messages created by a TEE
 that responds to a TAM’s OTrP message.

 The communication method of OTrP Messages between a TAM and TEE in a
 device may vary between TAM and TEE providers. A mandatory transport
 protocol is specified for a compliant TAM and a device TEE.

 An OTrP Broker is used to bridge communication between a TAM and a
 TEE. The OTrP Broker doesn’t need to know the actual content of OTrP
 Messages except for the TEE routing information.

Pei, et al. Expires November 16, 2019 [Page 11]

Internet-Draft OTrP May 2019

5.1. A Sample Device Setup Flow

 Step 1: Prepare Images for Devices

 1. [TEE vendor] Deliver TEE Image (CODE Binary) to device OEM

 2. [CA] Deliver root CA Whitelist

 3. [Soc] Deliver TFW Image

 Step 2: Inject Key Pairs and Images to Devices

 1. [OEM] Generate Secure Boot Key Pair (May be shared among multiple
 devices)

 2. [OEM] Flash signed TFW Image and signed TEE Image onto devices
 (signed by Secure Boot Key)

 Step 3: Setup attestation key pairs in devices

 1. [OEM] Flash TFW Public Key and a bootloader key.

 2. [TFW/TEE] Generate a unique attestation key pair and get a
 certificate for the device.

 Step 4: Setup trust anchors in devices

 1. [TFW/TEE] Store the key and certificate encrypted with the eFuse
 key

 2. [TEE vendor or OEM] Store trusted CA certificate list into
 devices

5.2. Derived Keys in The Protocol

 The protocol generates one key pair in run time to assist message
 communication and anonymous verification between a TAM and a TEE.

 TEE SP Anonymous Key (AIK): one derived key pair per SP in a device

 The purpose of the key pair is to sign data by a TEE without using
 its TEE device key for anonymous attestation to a Client Application.
 This key pair is generated in the first SD creation for an SP. It is
 deleted when all SDs are removed for a SP in a device. The public
 key of the key pair is given to the caller Client Application and TAM
 for future TEE returned data validation. The public key of this AIK
 is also used by a TAM to encrypt TA binary data and personalization
 data when it sends a TA to a device for installation.

Pei, et al. Expires November 16, 2019 [Page 12]

Internet-Draft OTrP May 2019

5.3. Security Domain Hierarchy and Ownership

 The primary job of a TAM is to help an SP to manage its trusted
 application components. A TA is typically installed in an SD. An SD
 is commonly created for an SP.

 When an SP delegates its SD and TA management to a TAM, an SD is
 created on behalf of a TAM in a TEE and the owner of the SD is
 assigned to the TAM. An SD may be associated with an SP but the TAM
 has full privilege to manage the SD for the SP.

 Each SD for an SP is associated with only one TAM. When an SP
 changes TAM, a new SP SD must be created to associate with the new
 TAM. The TEE will maintain a registry of TAM ID and SP SD ID
 mapping.

 From an SD ownership perspective, the SD tree is flat and there is
 only one level. An SD is associated with its owner. It is up to TEE
 implementation how it maintains SD binding information for a TAM and
 different SPs under the same TAM.

 It is an important decision in this protocol specification that a TEE
 doesn’t need to know whether a TAM is authorized to manage the SD for
 an SP. This authorization is implicitly triggered by an SP Client
 Application, which instructs what TAM it wants to use. An SD is
 always associated with a TAM in addition to its SP ID. A rogue TAM
 isn’t able to do anything on an unauthorized SP’s SD managed by
 another TAM.

 Since a TAM may support multiple SPs, sharing the same SD name for
 different SPs creates a dependency in deleting an SD. An SD can be
 deleted only after all TAs associated with this SD is deleted. An SP
 cannot delete a Security Domain on its own with a TAM if a TAM
 decides to introduce such sharing. There are cases where multiple
 virtual SPs belong to the same organization, and a TAM chooses to use
 the same SD name for those SPs. This is totally up to the TAM
 implementation and out of scope of this specification.

5.4. SD Owner Identification and TAM Certificate Requirements

 There is a need of cryptographically binding proof about the owner of
 an SD in a device. When an SD is created on behalf of a TAM, a
 future request from the TAM must present itself as a way that the TEE
 can verify it is the true owner. The certificate itself cannot
 reliably used as the owner because TAM may change its certificate.

 To this end, each TAM will be associated with a trusted identifier
 defined as an attribute in the TAM certificate. This field is kept

Pei, et al. Expires November 16, 2019 [Page 13]

Internet-Draft OTrP May 2019

 the same when the TAM renew its certificates. A TAM CA is
 responsible to vet the requested TAM attribute value.

 This identifier value must not collide among different TAM providers,
 and one TAM shouldn’t be able to claim the identifier used by another
 TAM provider.

 The certificate extension name to carry the identifier can initially
 use SubjectAltName:registeredID. A dedicated new extension name may
 be registered later.

 One common choice of the identifier value is the TAM’s service URL.
 A CA can verify the domain ownership of the URL with the TAM in the
 certificate enrollment process.

 A TEE can assign this certificate attribute value as the TAM owner ID
 for the SDs that are created for the TAM.

 An alternative way to represent an SD ownership by a TAM is to have a
 unique secret key upon SD creation such that only the creator TAM is
 able to produce a Proof-of-Possession (POP) data with the secret.

5.5. Service Provider Container

 A sample Security Domain hierarchy for the TEE is shown below.

 | TEE |

 |
 | ----------
 |----------| SP1 SD1 |
 | ----------
 | ----------
 |----------| SP1 SD2 |
 | ----------
 | ----------
 |----------| SP2 SD1 |

 OTrP segregates SDs and TAs such that a TAM can only manage or
 retrieve data for SDs and TAs that it previously created for the SPs
 it represents.

Pei, et al. Expires November 16, 2019 [Page 14]

Internet-Draft OTrP May 2019

6. OTrP Broker

 A TEE and TAs that run inside the TEE don’t generally have capability
 to communicate to the outside of the hosting device, for example, the
 TEE specified by Global Platform groups [GPTEE]. This calls for a
 software module in the REE world to handle the network communication.
 Each Client Application in REE may carry this communication
 functionality but it must also interact with the TEE for the message
 exchange. The TEE interaction will vary according to different TEEs.
 In order for a Client Application to transparently support different
 TEEs, it is imperative to have a common interface for a Client
 Application to invoke for exchanging messages with TEEs.

 A shared OTrP Broker comes to meed this need. An OTrP Broker is a
 Rich Application or SDK that facilitates communication between a TAM
 and TEE. It also provides interfaces for TAM SDK or Client
 Applications to query and trigger TA installation that the
 application needs to use.

 This interface for Client Applications may be commonly an Android
 service call for an Android powered device. A Client Application
 interacts with a TAM, and turns around to pass messages received from
 TAM to OTrP Broker.

 In all cases, a Client Application needs to be able to identify an
 OTrP Broker that it can use.

6.1. Role of OTrP Broker

 An OTrP Broker abstracts the message exchanges with the TEE in a
 device. The input data is originated from a TAM that a Client
 Application connects. A Client Application may also directly call
 OTrP Broker for some TA query functions.

 OTrP Broker may internally process a request from TAM. At least, it
 needs to know where to route a message, e.g. TEE instance. It
 doesn’t need to process or verify message content.

 OTrP Broker returns TEE / TFW generated response messages to the
 caller. OTrP Broker isn’t expected to handle any network connection
 with an application or TAM.

 OTrP Broker only needs to return an OTrP Broker error message if the
 TEE is not reachable for some reason. Other errors are represented
 as response messages returned from the TEE which will then be passed
 to the TAM.

Pei, et al. Expires November 16, 2019 [Page 15]

Internet-Draft OTrP May 2019

6.2. OTrP Broker and Global Platform TEE Client API

 A Client Application may use Global Platform (GP) TEE API for TA
 communication. OTrP may use the GP TEE Client API but it is internal
 to OTrP implementation that converts given messages from TAM. More
 details can be found at [GPTEECLAPI].

6.3. OTrP Broker Implementation Consideration

 A Provider should consider methods of distribution, scope and
 concurrency on device and runtime options when implementing an OTrP
 Broker. Several non-exhaustive options are discussed below.
 Providers are encouraged to take advantage of the latest
 communication and platform capabilities to offer the best user
 experience.

6.3.1. OTrP Broker Distribution

 OTrP Broker installation is commonly carried out at OEM time. A user
 can dynamically download and install an OTrP Broker on-demand.

 It is important to ensure a legitimate OTrP Broker is installed and
 used. If an OTrP Broker is compromised it may send rogue messages to
 TAM and TEE and introduce additional risks.

6.3.2. Number of OTrP Broker

 We anticipate only one shared OTrP Broker instance in a device. The
 device’s TEE vendor will most probably supply one OTrP Broker.
 Potentially we expect some open source.

 With one shared OTrP Broker, the OTrP Broker provider is responsible
 to allow multiple TAMs and TEE providers to achieve interoperability.
 With a standard OTrP Broker interface, TAM can implement its own SDK
 for its SP Client Applications to work with this OTrP Broker.

 Multiple independent OTrP Broker providers can be used as long as
 they have standard interface to a Client Application or TAM SDK.
 Only one OTrP Broker is expected in a device.

 TAM providers are generally expected to provide SDK for SP
 applications to interact with an OTrP Broker for the TAM and TEE
 interaction.

Pei, et al. Expires November 16, 2019 [Page 16]

Internet-Draft OTrP May 2019

6.4. OTrP Broker Interfaces for Client Applications

 A Client Application shall be responsible for relaying messages
 between the OTrP Broker and the TAM.

 If a failure occurs during calling OTrP Broker, an error message
 described in "Common Errors" section (see Section 7.6) will be
 returned.

6.4.1. ProcessOTrPMessage call

 Description

 A Client Application will use this method of the OTrP Broker in a
 device to pass OTrP messages from a TAM. The method is
 responsible for interacting with the TEE and for forwarding the
 input message to the TEE. It also returns TEE generated response
 message back to the Client Application.

 Inputs:

 TAMInMsg - OTrP message generated in a TAM that is passed to this
 method from a Client Application.

 Outputs:

 A TEE-generated OTrP response message (which may be a successful
 response or be a response message containing an error raised
 within the TEE) for the client application to forward to the TAM.
 In the event of the OTrP Broker not being able to communicate with
 the TEE, a OTrPBrokerException shall be thrown.

6.4.2. GetTAInformation call

 Description

 A Client Application may quickly query local TEE about a
 previously installed TA without requiring TAM each time if it has
 had the TA’s identifier and previously saved TEE SP AIK public key
 for TA information integrity verification.

 Inputs:

Pei, et al. Expires November 16, 2019 [Page 17]

Internet-Draft OTrP May 2019

 {
 "TAQuery": {
 "spid": "<SP identifier value of the TA>",
 "taid": "<The identifier value of the TA>"
 }
 }

 Outputs:

 The OTrP Broker is expected to return TA signer and TAM signer
 certificate along with other metadata information about the TA
 associated with the given identifier. It follows the underlying
 TEE trust model for authoring the local TA query from a Client
 Application.

 The output is a JSON message that is generated by the TEE. It
 contains the following information:

 * tamid

 * SP ID

 * TA signer certificate

 * TAM certificate

 The message is signed with TEE SP AIK private key.

 The Client Application is expected to consume the response as
 follows.

 The Client Application gets signed TA metadata, in particular, the
 TA signer certificate. It is able to verify that the result is
 from device by checking signer against TEE SP AIK public key it
 gets in some earlier interaction with TAM.

 If this is a new Client Application in the device that hasn’t had
 TEE SP AIK public key for the response verification, the
 application can contact the TAM first to do GetDeviceState, and
 TAM will return TEE SP AIK public key to the app for this
 operation to proceed.

 Output Message:

Pei, et al. Expires November 16, 2019 [Page 18]

Internet-Draft OTrP May 2019

 {
 "TAInformationTBS": {
 "taid": "<TA Identifier from the input>",
 "tamid": "<TAM ID for the Security Domain where this TA
 resides>",
 "spid": "<The service provider identifier of this TA>",
 "signercert": "<The BASE64 encoded certificate data of the
 TA binary application’s signer certificate>",
 "signercacerts": [< The full list of CA certificate chain
 including the root CA>
],
 "cacert": "<The BASE64 encoded CA certificate data of the TA
 binary application’s signer certificate>"
],
 "tamcert": "<The BASE64 encoded certificate data of the TAM
 that manages this TA.>",
 "tamcacerts": [< The full list of CA certificate chain
 including the root CA>
],
 "cacert":"<The BASE64 encoded CA certificate data of the TAM
 that manages this TA>"
]
 }
 }

 {
 "TAInformation": {
 "payload": "<The BASE64URL encoding of the TAInformationTBS
 JSON above>",
 "protected": "<BASE64URL encoded signing algorithm>",
 "header": {
 "signer": {"<JWK definition of the TEE SP AIK public
 key>"}
 },
 "signature": "<signature contents signed by TEE SP AIK
 private key BASE64URL encoded>"
 }
 }

 where the definitions of BASE64 and BASE64URL refer to [RFC4648].

 A sample JWK public key representation refers to an example in
 [RFC7517].

Pei, et al. Expires November 16, 2019 [Page 19]

Internet-Draft OTrP May 2019

6.5. Sample End-to-End Client Application Flow

6.5.1. Case 1: A New Client Application Uses a TA

 1. During the Client Application installation time, the Client
 Application calls TAM to initialize the device preparation step.

 A. The Client Application knows it wants to use a Trusted
 Application TA1 but the application doesn’t know whether TA1
 has been installed or not. It can use GP TEE Client API
 [GPTEECLAPI] to check the existence of TA1 first. If it
 detects that TA1 doesn’t exist, it will contact TAM to
 initiate the installation of TA1. Note that TA1 could have
 been previously installed by other Client Applications from
 the same service provider in the device.

 B. The Client Application sends the TAM the TA list that it
 depends on. The TAM will query a device for the Security
 Domains and TAs that have been installed, and instructs the
 device to install any dependent TAs that have not been
 installed.

 C. In general, the TAM has the latest TA list and their status
 in a device because all operations are instructed by TAM.
 TAM has such visibility because all Security Domain deletion
 and TA deletion are managed by the TAM; the TAM could have
 stored the state when a TA is installed, updated and
 deleted. There is also the possibility that an update
 command is carried out inside TEE but a response is never
 received in TAM. There is also possibility that some manual
 local reset is done in a device that the TAM isn’t aware of
 the changes.

 2. The TAM generates message: GetDeviceStateRequest

 3. The Client Application passes the JSON message
 GetDeviceStateRequest to OTrP Broker call ProcessOTrPMessage.
 The communication between a Client Application and an OTrP
 Broker is up to the implementation of the OTrP Broker.

 4. The OTrP Broker routes the message to the active TEE. Multiple
 TEE case: it is up to OTrP Broker to figure this out. This
 specification limits the support to only one active TEE, which
 is the typical case today.

 5. The target active TEE processes the received OTrP message, and
 returns a JSON message GetDeviceStateResponse.

Pei, et al. Expires November 16, 2019 [Page 20]

Internet-Draft OTrP May 2019

 6. The OTrP Broker passes the GetDeviceStateResponse to the Client
 Application.

 7. The Client Application sends GetDeviceStateResponse to the TAM.

 8. The TAM processes the GetDeviceStateResponse.

 A. Extract TEEspaik for the SP, signs TEEspaik with TAM signer
 key

 B. Examine SD list and TA list

 9. The TAM continues to carry out other actions based on the need.
 The next call could be instructing the device to install a
 dependent TA.

 A. Assume a dependent TA isn’t in the device yet, the TAM may
 do the following: (1) create an SD in which to install the
 TA by sending a CreateSDRequest message. The message is
 sent back to the Client Application, and then the OTrP
 Broker and TEE to process; (2) install a TA with an
 InstallTARequest message.

 B. If a Client Application depends on multiple TAs, the Client
 Application should expect multiple round trips of the TA
 installation message exchanges.

 10. At the last TAM and TEE operation, the TAM returns the signed
 TEE SP AIK public key to the application.

 11. The Client Application stores the TEEspaik for future loaded TA
 trust check.

 12. If the TAM finds that this is a fresh device that does not have
 any SD for the SP yet, then the TAM may next create an SD for
 the SP.

 13. During Client Application installation, the application checks
 whether required Trusted Applications are already installed,
 which may have been provided by the TEE. If needed, it will
 contact its TAM service to determine whether the device is ready
 or install TA list that this application needs.

6.5.2. Case 2: A Previously Installed Client Application Calls a TA

 1. The Client Application checks the device readiness: (a) whether
 it has a TEE; (b) whether it has TA that it depends. It may
 happen that TAM has removed the TA this application depends on.

Pei, et al. Expires November 16, 2019 [Page 21]

Internet-Draft OTrP May 2019

 2. The Client Application calls the OTrP Broker to query the TA.

 3. The OTrP Broker queries the TEE to get TA information. If the
 given TA doesn’t exist, an error is returned.

 4. The Client Application parses the TAInformation message.

 5. If the TA doesn’t exist, the Client Application calls its TAM to
 install the TA. If the TA exists, the Client Application
 proceeds to call the TA.

7. OTrP Messages

 The main OTrP component is the set of standard JSON messages created
 by a TAM to deliver device SD and TA management commands to a device,
 and device attestation and response messages created by TEE to
 respond to TAM OTrP Messages.

 An OTrP Message is designed to provide end-to-end security. It is
 always signed by its creator. In addition, an OTrP Message is
 typically encrypted such that only the targeted device TEE or TAM is
 able to decrypt and view the actual content.

7.1. Message Format

 OTrP Messages use the JSON format for JSON’s simple readability and
 moderate data size in comparison with alternative TLV and XML
 formats. More compact CBOR format may be used as an alternative
 choice.

 JSON Message security has developed JSON Web Signing and JSON Web
 Encryption standard in the IETF Workgroup JOSE, see JWS [RFC7515] and
 JWE [RFC7516]. The OTrP Messages in this protocol will leverage the
 basic JWS and JWE to handle JSON signing and encryption.

7.2. Message Naming Convention

 For each TAM command "xyz"", OTrP use the following naming convention
 to represent its raw message content and complete request and
 response messages:

Pei, et al. Expires November 16, 2019 [Page 22]

Internet-Draft OTrP May 2019

 +-----------------------+----------------+---------------------+
 | Purpose | Message Name | Example |
 +-----------------------+----------------+---------------------+
 | Request to be signed | xyzTBSRequest | CreateSDTBSRequest |
 | | | |
 | Request message | xyzRequest | CreateSDRequest |
 | | | |
 | Response to be signed | xyzTBSResponse | CreateSDTBSResponse |
 | | | |
 | Response message | xyzResponse | CreateSDResponse |
 +-----------------------+----------------+---------------------+

7.3. Request and Response Message Template

 An OTrP Request message uses the following format:

 {
 "<name>TBSRequest": {
 <request message content>
 }
 }

 A corresponding OTrP Response message will be as follows.

 {
 "<name>TBSResponse": {
 <response message content>
 }
 }

7.4. Signed Request and Response Message Structure

 A signed request message will generally include only one signature,
 and uses the flattened JWS JSON Serialization Syntax, see
 Section 7.2.2 in [RFC7515].

 A general JWS object looks like the following.

 {
 "payload": "<payload contents>",
 "protected": "<integrity-protected header contents>",
 "header": {
 <non-integrity-protected header contents>,
 },
 "signature": "<signature contents>"
 }

Pei, et al. Expires November 16, 2019 [Page 23]

Internet-Draft OTrP May 2019

 OTrP signed messages only require the signing algorithm as the
 mandate header in the property "protected". The "non-integrity-
 protected header contents" is optional.

 OTrP signed message will be given an explicit Request or Response
 property name. In other words, a signed Request or Response uses the
 following template.

 A general JWS object looks like the following.

 {
 "<name>[Request | Response]": {
 <JWS Message of <name>TBS[Request | Response]
 }
 }

 With the standard JWS message format, a signed OTrP Message looks
 like the following.

 {
 "<name>[Request | Response]": {
 "payload": "<payload contents of <name>TBS[Request | Response]>",
 "protected": "<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature": "<signature contents>"
 }
 }

 The top element "<name>[Signed][Request|Response]" cannot be fully
 trusted to match the content because it doesn’t participate in the
 signature generation. However, a recipient can always match it with
 the value associated with the property "payload". It purely serves
 to provide a quick reference for reading and method invocation.

 Furthermore, most properties in an unsigned OTrP messages are
 encrypted to provide end-to-end confidentiality. The only OTrP
 message that isn’t encrypted is the initial device query message that
 asks for the device state information.

 Thus a typical OTrP Message consists of an encrypted and then signed
 JSON message. Some transaction data such as transaction ID and TEE
 information may need to be exposed to the OTrP Broker for routing
 purpose. Such information is excluded from JSON encryption. The
 device’s signer certificate itself is encrypted. The overall final
 message is a standard signed JSON message.

 As required by JSW/JWE, those JWE and JWS related elements will be
 BASE64URL encoded. Other binary data elements specific to the OTrP

Pei, et al. Expires November 16, 2019 [Page 24]

Internet-Draft OTrP May 2019

 specification are BASE64-encoded. This specification indicates
 elements that should be BASE64 and those elements that are to be
 BASE64URL encoded.

7.4.1. Identifying Signing and Encryption Keys for JWS/JWE Messaging

 JWS and JWE messaging allow various options for identifying the
 signing and encryption keys, for example, it allows optional elements
 including "x5c", "x5t" and "kid" in the header to cover various
 possibilities.

 To protect privacy, it is important that the device’s certificate is
 released only to a trusted TAM, and that it is encrypted. The TAM
 will need to know the device certificate, but untrusted parties must
 not be able to get the device certificate. All OTrP messaging
 conversations between a TAM and device begin with
 GetDeviceStateRequest / GetDeviceStateResponse. These messages have
 elements built into them to exchange signing certificates, described
 in the section Section 9. Any subsequent messages in the
 conversation that follow on from this implicitly use the same
 certificates for signing/encryption, and as a result the certificates
 or references may be omitted in those subsequent messages.

 In other words, the signing key identifier in the use of JWS and JWE
 here may be absent in the subsequent messages after the initial
 GetDeviceState query.

 This has an implication on the TEE and TAM implementation: they have
 to cache the signer certificates for the subsequent message signature
 validation in the session. It may be easier for a TAM service to
 cache transaction session information but not so for a TEE in a
 device. A TAM can get a device’s capability by checking the response
 message from a TEE to decide whether it should include its TAM signer
 certificate and OCSP data in each subsequent request message. The
 device’s caching capability is reported in GetDeviceStateResponse
 signerreq parameter.

7.5. JSON Signing and Encryption Algorithms

 The OTrP JSON signing algorithm shall use SHA256 or a stronger hash
 method with respective key type. JSON Web Algorithm RS256 or ES256
 [RFC7518] SHALL be used for RSA with SHA256 and ECDSA with SHA256.
 If RSA with SHA256 is used, the JSON web algorithm representation is
 as follows.

 {"alg":"RS256"}

Pei, et al. Expires November 16, 2019 [Page 25]

Internet-Draft OTrP May 2019

 The (BASE64URL encoded) "protected" header property in a signed
 message looks like the following:

 "protected":"eyJhbGciOiJSUzI1NiJ9"

 If ECSDA with P-256 curve and SHA256 are used for signing, the JSON
 signing algorithm representation is as follows.

 {"alg":"ES256"}

 The value for the "protected" field will be the following.

 eyJhbGciOiJFUzI1NiJ9

 Thus, a common OTrP signed message with ES256 looks like the
 following.

 {
 "payload": "<payload contents>",
 "protected": "eyJhbGciOiJFUzI1NiJ9",
 "signature": "<signature contents>"
 }

 The OTrP JSON message encryption algorithm SHOULD use one of the
 supported algorithms defined in the later chapter of this document.
 JSON encryption uses a symmetric key as its "Content Encryption Key
 (CEK)". This CEK is encrypted or wrapped by a recipient’s key. The
 OTrP recipient typically has an asymmetric key pair. Therefore, the
 CEK will be encrypted by the recipient’s public key.

 A compliant implementation shall support the following symmetric
 encryption algorithm and anticipate future new algorithms.

 {"enc":"A128CBC-HS256"}

 This algorithm represents encryption with AES 128 in CBC mode with
 HMAC SHA 256 for integrity. The value of the property "protected" in
 a JWE message will be

 eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

Pei, et al. Expires November 16, 2019 [Page 26]

Internet-Draft OTrP May 2019

 An encrypted JSON message looks like the following.

 {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "recipients": [
 {
 "header": {
 "alg": "<RSA1_5 etc.>"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON plaintext
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }

 OTrP doesn’t use JWE AAD (Additional Authenticated Data) because each
 message is always signed after the message is encrypted.

7.5.1. Supported JSON Signing Algorithms

 The following JSON signature algorithm is mandatory support in the
 TEE and TAM:

 o RS256

 ES256 is optional to support.

7.5.2. Support JSON Encryption Algorithms

 The following JSON authenticated encryption algorithm is mandatory
 support in TEE and TAM.

 o A128CBC-HS256

 A256CBC-HS512 is optional to support.

7.5.3. Supported JSON Key Management Algorithms

 The following JSON key management algorithm is mandatory support in
 TEE and TAM.

 o RSA1_5

 ECDH-ES+A128KW and ECDH-ES+A256KW are optional to support.

Pei, et al. Expires November 16, 2019 [Page 27]

Internet-Draft OTrP May 2019

7.6. Common Errors

 An OTrP Response message typically needs to report the operation
 status and error causes if an operation fails. The following JSON
 message elements should be used across all OTrP Messages.

 "status": "pass | fail"

 "reason": {
 "error-code": "<error code if there is any>",
 "error-message": "<error message>"
 }

 "ver": "<version string>"

7.7. OTrP Message List

 The following table lists the OTrP commands and therefore
 corresponding Request and Response messages defined in this
 specification. Additional messages may be added in the future when
 new task messages are needed.

 GetDeviceState -
 A TAM queries a device’s current state with a message
 GetDeviceStateRequest. A device TEE will report its version, its
 FW version, and list of all SDs and TAs in the device that is
 managed by the requesting TAM. TAM may determine whether the
 device is trustworthy and decide to carry out additional commands
 according to the response from this query.

 CreateSD -
 A TAM instructs a device TEE to create an SD for an SP. The
 recipient TEE will check whether the requesting TAM is
 trustworthy.

 UpdateSD -
 A TAM instructs a device TEE to update an existing SD. A typical
 update need comes from SP certificate change, TAM certificate
 change and so on. The recipient TEE will verify whether the TAM
 is trustworthy and owns the SD.

 DeleteSD -
 A TAM instructs a device TEE to delete an existing SD. A TEE
 conditionally deletes TAs loaded in the SD according to a request
 parameter. An SD cannot be deleted until all TAs in this SD are
 deleted. If this is the last SD for an SP, TEE MAY also delete
 TEE SP AIK key for this SP.

Pei, et al. Expires November 16, 2019 [Page 28]

Internet-Draft OTrP May 2019

 InstallTA -
 A TAM instructs a device to install a TA into an SD for a SP.
 The TEE in a device will check whether the TAM and TA are
 trustworthy.

 UpdateTA -
 A TAM instructs a device to update a TA into an SD for an SP.
 The change may commonly be bug fix for a previously installed TA.

 DeleteTA -
 A TAM instructs a device to delete a TA. The TEE in a device
 will check whether the TAM and TA are trustworthy.

7.8. OTrP Request Message Routing Rules

 For each command that a TAM wants to send to a device, the TAM
 generates a request message. This is typically triggered by a Client
 Application that uses the TAM. The Client Application initiates
 contact with the TAM and receives TAM OTrP Request messages according
 to the TAM’s implementation. The Client Application forwards the
 OTrP message to an OTrP Broker in the device, which in turn sends the
 message to the active TEE in the device.

 The current version of this specification assumes that each device
 has only one active TEE, and the OTrP Broker is responsible to
 connect to the active TEE. This is the case today with devices in
 the market.

 When the TEE responds to a request, the OTrP Broker gets the OTrP
 response messages back to the Client Application that sent the
 request. In case the target TEE fails to respond to the request, the
 OTrP Broker will be responsible to generate an error message to reply
 the Client Application. The Client Application forwards any data it
 received to its TAM.

7.8.1. SP Anonymous Attestation Key (SP AIK)

 When the first new Security Domain is created in a TEE for an SP, a
 new key pair is generated and associated with this SP. This key pair
 is used for future device attestation to the service provider instead
 of using the device’s TEE key pair.

8. Transport Protocol Support

 The OTrP message exchange between a TEE device and TAM generally
 takes place between a Client Application in REE and TAM. A device
 that is capable to run a TEE and PKI based cryptographic attestation

Pei, et al. Expires November 16, 2019 [Page 29]

Internet-Draft OTrP May 2019

 isn’t generally resource constraint to carry out standard HTTPS
 connections. A compliant device and TAM SHOULD support HTTPs.

9. Detailed Messages Specification

 For each message in the following sections all JSON elements are
 mandatory if not explicitly indicated as optional.

9.1. GetDeviceState

 This is the first command that a TAM will send to a device. This
 command is triggered when an SP’s Client Application contacts its TAM
 to check whether the underlying device is ready for TA operations.

 This command queries a device’s current TEE state. A device TEE will
 report its version, its FW version, and list of all SDs and TAs in
 the device that is managed by the requesting TAM. TAM may determine
 whether the device is trustworthy and decide to carry out additional
 commands according to the response from this query.

 The request message of this command is signed by the TAM. The
 response message from the TEE is encrypted. A random message
 encryption key (MK) is generated by TEE, and this encrypted key is
 encrypted by the TAM’s public key such that only the TAM that sent
 the request is able to decrypt and view the response message.

9.1.1. GetDeviceStateRequest message

 {
 "GetDeviceStateTBSRequest": {
 "ver": "1.0",
 "rid": "<Unique request ID>",
 "tid": "<transaction ID>",
 "ocspdat": [<a list of OCSP stapling data>"],
 "supportedsigalgs": [<array of supported signing algorithms>]
 }
 }

 The request message consists of the following data elements:

 ver - version of the message format

 rid - a unique request ID generated by the TAM

 tid - a unique transaction ID to trace request and response. This
 can be from a prior transaction’s tid field, and can be used in
 subsequent message exchanges in this TAM session. The
 combination of rid and tid MUST be made unique.

Pei, et al. Expires November 16, 2019 [Page 30]

Internet-Draft OTrP May 2019

 ocspdat - A list of OCSP stapling data respectively for the TAM
 certificate and each of the CA certificates up to the root
 certificate. The TAM provides OCSP data such that a recipient
 TEE can validate the TAM certificate chain revocation status
 without making its own external OCSP service call. A TEE MAY
 cache the CA OCSP data such that the array may contain only the
 OCSP stapling data for the TAM certificate in subsequent
 exchanges. This is a mandatory field.

 supportedsigalgs - an optional property to list the signing
 algorithms that the TAM is able to support. A recipient TEE MUST
 choose an algorithm in this list to sign its response message if
 this property is present in a request. If it is absent, the TEE
 may use any compliant signing algorithm that is listed as
 mandatory support in this specification.

 The final request message is JSON signed message of the above raw
 JSON data with TAM’s certificate.

 {
 "GetDeviceStateRequest": {
 "payload": "<BASE64URL encoding of the GetDeviceStateTBSRequest
 JSON above>",
 "protected": "<BASE64URL encoded signing algorithm>",
 "header": {
 "x5c": "<BASE64 encoded TAM certificate chain up to the
 root CA certificate>"
 },
 "signature":"<signature contents signed by TAM private key>"
 }
 }

 The signing algorithm SHOULD use SHA256 with respective key type.
 The mandatory algorithm support is the RSA signing algorithm. The
 signer header "x5c" is used to include the TAM signer certificate up
 to the root CA certificate.

9.1.2. Request processing requirements at a TEE

 Upon receiving a request message GetDeviceStateRequest at a TEE, the
 TEE MUST validate a request:

 1. Validate JSON message signing. If it doesn’t pass, an error
 message is returned.

 2. Validate that the request TAM certificate is chained to a trusted
 CA that the TEE embeds as its trust anchor.

Pei, et al. Expires November 16, 2019 [Page 31]

Internet-Draft OTrP May 2019

 * Cache the CA OCSP stapling data and certificate revocation
 check status for other subsequent requests.

 * A TEE can use its own clock time for the OCSP stapling data
 validation.

 3. Optionally collect Firmware signed data

 * This is a capability in ARM architecture that allows a TEE to
 query Firmware to get FW signed data. It isn’t required for
 all TEE implementations. When TFW signed data is absent, it
 is up to a TAM’s policy how it will trust a TEE.

 4. Collect SD information for the SD owned by this TAM

9.1.3. Firmware Signed Data

 Firmware isn’t expected to process or produce JSON data. It is
 expected to just sign some raw bytes of data.

 The data to be signed by TFW key needs be some unique random data
 each time. The (UTF-8 encoded) "tid" value from the
 GetDeviceStateTBSRequest shall be signed by the firmware. TAM isn’t
 expected to parse TFW data except the signature validation and signer
 trust path validation.

 It is possible that a TEE can get some valid TFW signed data from
 another device. The TEE is responsible to validate TFW integrity to
 ensure that the underlying device firmware is trustworthy. In some
 cases, a TEE isn’t able to get a TFW signed data, in which case the
 TEE trust validation is up to a TAM to decide. A TAM may opt to
 trust a TEE basing on the TEE signer and additional information about
 a TEE out-of-band.

 When TFW signed data is available, a TAM validates the TEE and trusts
 that a trusted TEE has carried out appropriate trust check about a
 TFW.

 TfwData: {
 "tbs": "<TFW to be signed data, BASE64 encoded>",
 "cert": "<BASE64 encoded TFW certificate>",
 "sigalg": "Signing method",
 "sig": "<TFW signed data, BASE64 encoded>"
 }

 It is expected that a FW uses standard signature methods for maximal
 interoperability with TAM providers. The mandatory support list of
 signing algorithm is RSA with SHA256.

Pei, et al. Expires November 16, 2019 [Page 32]

Internet-Draft OTrP May 2019

 The JSON object above is constructed by a TEE with data returned from
 the FW. It isn’t a standard JSON signed object. The signer
 information and data to be signed must be specially processed by a
 TAM according to the definition given here. The data to be signed is
 the raw data.

9.1.3.1. Supported Firmware Signature Methods

 TAM providers shall support the following signature methods. A
 firmware provider can choose one of the methods in signature
 generation.

 o RSA with SHA256

 o ECDSA with SHA 256

 The value of "sigalg" in the TfwData JSON message SHOULD use one of
 the following:

 o RS256

 o ES256

9.1.4. Post Conditions

 Upon successful request validation, the TEE information is collected.
 There is no change in the TEE in the device.

 The response message shall be encrypted where the encryption key
 shall be a symmetric key that is wrapped by TAM’s public key. The
 JSON Content Encryption Key (CEK) is used for this purpose.

9.1.5. GetDeviceStateResponse Message

 The message has the following structure.

 {
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "pass | fail",
 "rid": "<the request ID from the request message>",
 "tid": "<the transaction ID from the request message>",
 "signerreq": true | false // about whether TAM needs to send
 signer data again in subsequent messages,
 "edsi": "<Encrypted JSON DSI information>"
 }
 }

Pei, et al. Expires November 16, 2019 [Page 33]

Internet-Draft OTrP May 2019

 where

 signerreq - true if the TAM should send its signer certificate and
 OCSP data again in the subsequent messages. The value may be
 "false" if the TEE caches the TAM’s signer certificate and OCSP
 status.

 rid - the request ID from the request message

 tid - the tid from the request message

 edsi - the main data element whose value is JSON encrypted message
 over the following Device State Information (DSI).

 The Device State Information (DSI) message consists of the following.

Pei, et al. Expires November 16, 2019 [Page 34]

Internet-Draft OTrP May 2019

 {
 "dsi": {
 "tfwdata": {
 "tbs": "<TFW to be signed data is the tid>"
 "cert": "<BASE64 encoded TFW certificate>",
 "sigalg": "Signing method",
 "sig": "<TFW signed data, BASE64 encoded>"
 },
 "tee": {
 "name": "<TEE name>",
 "ver": "<TEE version>",
 "cert": "<BASE64 encoded TEE cert>",
 "cacert": "<JSON array value of CA certificates up to
 the root CA>",
 "sdlist": {
 "cnt": "<Number of SD owned by this TAM>",
 "sd": [
 {
 "name": "<SD name>",
 "spid": "<SP owner ID of this SD>",
 "talist": [
 {
 "taid": "<TA application identifier>",
 "taname": "<TA application friendly
 name>" // optional
 }
]
 }
]
 },
 "teeaiklist": [
 {
 "spaik": "<SP AIK public key, BASE64 encoded>",
 "spaiktype": "<RSA | ECC>",
 "spid": "<sp id>"
 }
]
 }
 }
 }

 The encrypted JSON message looks like the following.

Pei, et al. Expires November 16, 2019 [Page 35]

Internet-Draft OTrP May 2019

 {
 "protected": "<BASE64URL encoding of encryption algorithm header
 JSON data>",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON object of dsi
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }

 Assume we encrypt plaintext with AES 128 in CBC mode with HMAC SHA
 256 for integrity, the encryption algorithm header is:

 {"enc":"A128CBC-HS256"}

 The value of the property "protected" in the above JWE message will
 be

 eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

 In other words, the above message looks like the following:

 {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON object of dsi
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }

 The full response message looks like the following:

Pei, et al. Expires November 16, 2019 [Page 36]

Internet-Draft OTrP May 2019

 {
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "pass | fail",
 "rid": "<the request ID from the request message>",
 "tid": "<the transaction ID from the request message>",
 "signerreq": "true | false",
 "edsi": {
 "protected": "<BASE64URL encoding of encryption algorithm
 header JSON data>",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON object of dsi
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }
 }
 }

 The CEK will be encrypted by the TAM public key in the device. The
 TEE signed message has the following structure.

 {
 "GetDeviceTEEStateResponse": {
 "payload": "<BASE64URL encoding of the JSON message
 GetDeviceTEEStateTBSResponse>",
 "protected": "<BASE64URL encoding of signing algorithm>",
 "signature": "<BASE64URL encoding of the signature value>"
 }
 }

 The signing algorithm shall use SHA256 with respective key type, see
 Section 7.5.1.

 The final GetDeviceStateResponse response message consists of an
 array of TEE responses.

Pei, et al. Expires November 16, 2019 [Page 37]

Internet-Draft OTrP May 2019

 {
 "GetDeviceStateResponse": [// JSON array
 {"GetDeviceTEEStateResponse": ...},
 ...
 {"GetDeviceTEEStateResponse": ...}
]
 }

9.1.6. Error Conditions

 An error may occur if a request isn’t valid or the TEE runs into some
 error. The list of possible error conditions is the following.

 ERR_REQUEST_INVALID The TEE meets the following conditions with a
 request message: (1) The request from a TAM has an invalid message
 structure; mandatory information is absent in the message; or an
 undefined member or structure is included. (2) TEE fails to verify
 the signature of the message or fails to decrypt its contents.

 ERR_UNSUPPORTED_MSG_VERSION The TEE receives a version of message
 that the TEE can’t deal with.

 ERR_UNSUPPORTED_CRYPTO_ALG The TEE receives a request message
 encoded with a cryptographic algorithm that the TEE doesn’t
 support.

 ERR_TFW_NOT_TRUSTED The TEE considers the underlying device firmware
 be not trustworthy.

 ERR_TAM_NOT_TRUSTED The TEE needs to make sure whether the TAM is
 trustworthy by checking the validity of the TAM certificate and
 OCSP stapling data and so on. If the TEE finds the TAM is not
 reliable, it returns this error code.

 ERR_TEE_FAIL If the TEE fails to process a request because of its
 internal error but is able to sign an error response message, it
 will return this error code.

 The response message will look like the following if the TEE signing
 can work to sign the error response message.

Pei, et al. Expires November 16, 2019 [Page 38]

Internet-Draft OTrP May 2019

 {
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "fail",
 "rid": "<the request ID from the request message>",
 "tid": "<the transaction ID from the request message>",
 "reason": {"error-code":"<error code>"}
 "supportedsigalgs": [<an array of signature algorithms that
 the TEE supports>]
 }
 }

 where

 supportedsigalgs - an optional property to list the JWS signing
 algorithms that the active TEE supports. When a TAM sends a
 signed message that the TEE isn’t able to validate, it can
 include signature algorithms that it is able to consume in this
 status report. A TAM can generate a new request message to retry
 the management task with a TEE-supported signing algorithm.

 If the TEE isn’t able to sign an error message due to an internal
 device error, a general error message should be returned by the OTrP
 Broker.

9.1.7. TAM Processing Requirements

 Upon receiving a GetDeviceStateResponse message at a TAM, the TAM
 MUST validate the following.

 o Parse to get list of GetDeviceTEEStateResponse JSON objects

 o Parse the JSON "payload" property and decrypt the JSON element
 "edsi". The decrypted message contains the TEE signer
 certificate.

 o Validate the GetDeviceTEEStateResponse JSON signature. The signer
 certificate is extracted from the decrypted message in the last
 step.

 o Extract TEE information and check it against its TEE acceptance
 policy.

 o Extract the TFW signed element, and check the signer and data
 integration against its TFW policy.

 o Check the SD list and TA list and prepare for a subsequent command
 such as "CreateSD" if it needs to have a new SD for an SP.

Pei, et al. Expires November 16, 2019 [Page 39]

Internet-Draft OTrP May 2019

9.2. Security Domain Management

9.2.1. CreateSD

 This command is typically preceded with a GetDeviceState command that
 has acquired the device information of the target device by the TAM.
 The TAM sends such a command to instruct a TEE to create a new
 Security Domain for an SP.

 A TAM sends an OTrP CreateSDRequest Request message to a device TEE
 to create a Security Domain for an SP. Such a request is signed by
 the TAM where the TAM signer may or may not be the same as the SP’s
 TA signer certificate. The resulting SD is associated with two
 identifiers for future management:

 o TAM as the owner. The owner identifier is a registered unique TAM
 ID that is stored in the TAM certificate.

 o SP identified by its TA signer certificate as the authorization.
 A TAM can add more than one SP certificate to an SD.

 A Trusted Application that is signed by a matching SP signer
 certificate for an SD is eligible to be installed into that SD. The
 TA installation into an SD by a subsequent InstallTARequest message
 may be instructed from a TAM.

9.2.1.1. CreateSDRequest Message

Pei, et al. Expires November 16, 2019 [Page 40]

Internet-Draft OTrP May 2019

 The request message for CreateSD has the following JSON format.

 {
 "CreateSDTBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>", // this may be from prior message
 "tee": "<TEE routing name from the DSI for the SD’s target>",
 "nextdsi": true | false,
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED { // this piece of JSON data will be
 // encrypted
 "spid": "<SP ID value>",
 "sdname": "<SD name for the domain to be created>",
 "spcert": "<BASE64 encoded SP certificate>",
 "tamid": "<An identifiable attribute of the TAM
 certificate>",
 "did": "<SHA256 hash of the TEE cert>"
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous GetDeviceStateResponse.

 nextdsi - Indicates whether the up-to-date Device State Information
 (DSI) is expected in the response from the TEE to this request.

 dsihash - The BASE64-encoded SHA256 hash value of the DSI data
 returned in the prior TAM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidentally overwriting an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD creation. The encryption key is TAMmk that
 is encrypted by the target TEE’s public key. The entire message is
 signed by the TAM private key TAMpriv. A separate TAMmk isn’t used
 in the latest specification because JSON encryption will use a
 content encryption key for exactly the same purpose.

Pei, et al. Expires November 16, 2019 [Page 41]

Internet-Draft OTrP May 2019

 spid - A unique id assigned by the TAM for its SP. It should be
 unique within a TAM namespace.

 sdname - a name unique to the SP. TAM should ensure it is unique
 for each SP.

 spcert - The SP’s TA signer certificate is included in the request.
 This certificate will be stored by the device TEE which uses it to
 check against TA installation. Only if a TA is signed by a
 matching spcert associated with an SD will the TA be installed into
 the SD.

 tamid - SD owner claim by TAM - an SD owned by a TAM will be
 associated with a trusted identifier defined as an attribute in the
 signer TAM certificate. TEE will be responsible to assign this ID
 to the SD. The TAM certificate attribute for this attribute tamid
 MUST be vetted by the TAM signer issuing CA. With this trusted
 identifier, the SD query at TEE can be fast upon TAM signer
 verification.

 did - The SHA256 hash of the binary-encoded device TEE certificate.
 The encryption key CEK will be encrypted the recipient TEE’s public
 key. This hash value in the "did" property allows the recipient
 TEE to check whether it is the expected target to receive such a
 request. If this isn’t given, an OTrP message for device 2 could
 be sent to device 1. It is optional for the TEE to check because
 the successful decryption of the request message with this device’s
 TEE private key already proves it is the target. This explicit
 hash value makes the protocol not dependent on message encryption
 method in future.

 A CreateSDTBSRequest message is signed to generate a final
 CreateSDRequest message as follows.

 {
 "CreateSDRequest": {
 "payload": "<CreateSDTBSRequest JSON above>",
 "protected": "<integrity-protected header contents>",
 "header": "<non-integrity-protected header contents>",
 "signature": "<signature contents signed by TAM private key>"
 }
 }

 The TAM signer certificate is included in the "header" property.

Pei, et al. Expires November 16, 2019 [Page 42]

Internet-Draft OTrP May 2019

9.2.1.2. Request Processing Requirements at a TEE

 Upon receiving a CreateSDRequest request message at a TEE, the TEE
 MUST do the following:

 1. Validate the JSON request message as follows

 * Validate JSON message signing.

 * Validate that the request TAM certificate is chained to a
 trusted CA that the TEE embeds as its trust anchor.

 * Compare dsihash with its current state to make sure nothing
 has changed since this request was sent.

 * Decrypt to get the plaintext of the content: (a) spid, (b) sd
 name, (c) did.

 * Check that an SPID is supplied.

 * spcert check: check it is a valid certificate (signature and
 format verification only).

 * Check "did" is the SHA256 hash of its TEEcert BER raw binary
 data.

 * Check whether the requested SD already exists for the SP.

 * Check that the tamid in the request matches the TAM
 certificate’s TAM ID attribute.

 2. If the request was valid, create action

 * Create an SD for the SP with the given name.

 * Assign the tamid from the TAMCert to this SD.

 * Assign the SPID and SPCert to this SD.

 * Check whether a TEE SP AIK key pair already exists for the
 given SP ID.

 * Create TEE SP AIK key pair if it doesn’t exist for the given
 SP ID.

 * Generate new DSI data if the request asks for updated DSI.

 3. Construct a CreateSDResponse message

Pei, et al. Expires November 16, 2019 [Page 43]

Internet-Draft OTrP May 2019

 * Create raw content

 + Operation status

 + "did" or full signer certificate information,

 + TEE SP AIK public key if DSI isn’t going to be included

 + Updated DSI data if requested

 * The response message is encrypted with the same JWE CEK of the
 request without recreating a new content encryption key.

 * The encrypted message is signed with TEEpriv. The signer
 information ("did" or TEEcert) is encrypted.

 4. Deliver the response message. (a) The OTrP Broker returns this to
 the Client Application; (b) The Client App passes this back to
 the TAM.

 5. TAM processing. (a) The TAM processes the response message; (b)
 the TAM can look up signer certificate from the device ID "did".

 If a request is illegitimate or signature doesn’t pass, a "status"
 property in the response will indicate the error code and cause.

9.2.1.3. CreateSDResponse Message

 The response message for a CreateSDRequest contains the following
 content.

 {
 "CreateSDTBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason": "<failure reason detail>", // optional
 "did": "<the device id received from the request>",
 "sdname": "<SD name for the domain created>",
 "teespaik": "<TEE SP AIK public key, BASE64 encoded>",
 "dsi": "<Updated TEE state, including all SDs owned by
 this TAM>"
 }
 }
 }

Pei, et al. Expires November 16, 2019 [Page 44]

Internet-Draft OTrP May 2019

 In the response message, the following fields MUST be supplied.

 did - The SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TAM.

 teespaik - The newly generated SP AIK public key for the given SP.
 This is an optional value if the device has had another domain for
 the SP that has triggered TEE SP AIK key pair for this specific SP.

 There is a possible extreme error case where the TEE isn’t reachable
 or the TEE final response generation itself fails. In this case, the
 TAM might still receive a response from the OTrP Broker if the OTrP
 Broker is able to detect such error from TEE. In this case, a
 general error response message should be returned by the OTrP Broker,
 assuming OTrP Broker even doesn’t know any content and information
 about the request message.

 In other words, the TAM should expect to receive a TEE successfully
 signed JSON message, a general "status" message, or none when a
 client experiences a network error.

 {
 "CreateSDResponse": {
 "payload": "<CreateSDTBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by the TEE device private
 key (BASE64URL)>"
 }
 }

 When the TEE fails to respond, the OTrP Broker will not provide a
 subsequent response to the TAM. The TAM should treat this as if the
 device has gone offline where a response is never delivered back.

9.2.1.4. Error Conditions

 An error might occur if a request isn’t valid or the TEE runs into
 some error. The list of possible errors are as follows. Refer to
 the Error Code List (Section 13.1) for detailed causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

Pei, et al. Expires November 16, 2019 [Page 45]

Internet-Draft OTrP May 2019

 ERR_DEV_STATE_MISMATCH

 ERR_SD_ALREADY_EXIST

 ERR_SD_NOT_FOUND

 ERR_SPCERT_INVALID

 ERR_TEE_FAIL

 ERR_TAM_NOT_AUTHORIZED

 ERR_TAM_NOT_TRUSTED

9.2.2. UpdateSD

 This TAM initiated command can update an SP’s SD that it manages for
 any of the following needs: (a) Update an SP signer certificate; (b)
 Add an SP signer certificate when an SP uses multiple to sign TA
 binaries; (c) Update an SP ID.

 The TAM presents the proof of the SD ownership to the TEE, and
 includes related information in its signed message. The entire
 request is also encrypted for end-to-end confidentiality.

9.2.2.1. UpdateSDRequest Message

Pei, et al. Expires November 16, 2019 [Page 46]

Internet-Draft OTrP May 2019

 The UpdateSD request message has the following JSON format.

 {
 "UpdateSDTBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>", // this may be from prior message
 "tee": "<TEE routing name from the DSI for the SD’s target>",
 "nextdsi": true | false,
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED { // this piece of JSON will be encrypted
 "tamid": "<tamid associated with this SD>",
 "spid": "<SP ID>",
 "sdname": "<SD name for the domain to be updated>",
 "changes": {
 "newsdname": "<Change the SD name to this new name>",
 // Optional
 "newspid": "<Change SP ID of the domain to this new value>",
 // Optional
 "spcert": ["<BASE64 encoded new SP signer cert to be added>"],
 // Optional
 "deloldspcert": ["<The SHA256 hex value of an old SP cert
 assigned into this SD that should be deleted >"],
 // Optional
 "renewteespaik": true | false
 }
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value as the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous GetDeviceStateResponse

 nextdsi - Indicates whether the up-to-date Device State Information
 (DSI) is expected to be returned in the response from the TEE to
 this request.

 dsihash - The BASE64-encoded SHA256 hash value of the DSI data
 returned in the prior TAM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It

Pei, et al. Expires November 16, 2019 [Page 47]

Internet-Draft OTrP May 2019

 helps enforce SD update order in the right sequence without
 accidentally overwriting an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE’s public key.

 tamid - SD owner claim by TAM - an SD owned by a TAM will be
 associated with a trusted identifier defined as an attribute in the
 signer TAM certificate.

 spid - the identifier of the SP whose SD will be updated. This
 value is still needed because the SD name is considered unique only
 within an SP.

 sdname - the name of the target SD to be updated.

 changes - its content consists of changes are to be updated in the
 given SD.

 newsdname - the new name of the target SD to be assigned if this
 value is present.

 newspid - the new SP ID of the target SD to be assigned if this
 value is present.

 spcert - a new TA signer certificate of this SP to be added to the
 SD if this is present.

 deloldspcert - an SP certificate assigned into the SD is to be
 deleted if this is present. The value is the SHA256 fingerprint of
 the old SP certificate.

 renewteespaik - the value should be true or false. If it is present
 and the value is true, the TEE MUST regenerate TEE SP AIK for this
 SD’s owner SP. The newly generated TEE SP AIK for the SP must be
 returned in the response message of this request. If there is more
 than one SD for the SP, a new SPID for one of the domains will
 always trigger a new teespaik generation as if a new SP were
 introduced to the TEE.

Pei, et al. Expires November 16, 2019 [Page 48]

Internet-Draft OTrP May 2019

 The UpdateSDTBSRequest message is signed to generate the final
 UpdateSDRequest message.

 {
 "UpdateSDRequest": {
 "payload": "<UpdateSDTBSRequest JSON above>",
 "protected": "<integrity-protected header contents>",
 "header": "<non-integrity-protected header contents>",
 "signature":"<signature contents signed by TAM private key>"
 }
 }

 TAM signer certificate is included in the "header" property.

9.2.2.2. Request Processing Requirements at a TEE

 Upon receiving a request message UpdateSDRequest at a TEE, the TEE
 must validate a request:

 1. Validate the JSON request message

 * Validate JSON message signing

 * Validate that the request TAM certificate is chained to a
 trusted CA that the TEE embeds as its trust anchor.The TAM
 certificate status check is generally not needed anymore in
 this request. The prior request should have validated the TAM
 certificate’s revocation status.

 * Compare dsihash with the TEE cached last response DSI data to
 this TAM.

 * Decrypt to get the plaintext of the content.

 * Check that the target SD name is supplied.

 * Check whether the requested SD exists.

 * Check that the TAM owns this TAM by verifying tamid in the SD
 matches TAM certificate’s TAM ID attribute.

 * Now the TEE is ready to carry out update listed in the
 "content" message.

 2. If the request is valid, update action

 * If "newsdname" is given, replace the SD name for the SD to the
 new value

Pei, et al. Expires November 16, 2019 [Page 49]

Internet-Draft OTrP May 2019

 * If "newspid" is given, replace the SP ID assigned to this SD
 with the given new value

 * If "spcert" is given, add this new SP certificate to the SD.

 * If "deloldspcert" is present in the content, check previously
 assigned SP certificates to this SD, and delete the one that
 matches the given certificate hash value.

 * If "renewteespaik" is given and has a value of ’true’,
 generate a new TEE SP AIK key pair, and replace the old one
 with this.

 * Generate new DSI data if the request asks for updated DSI

 * Now the TEE is ready to construct the response message

 3. Construct UpdateSDResponse message

 * Create raw content

 + Operation status

 + "did" or full signer certificate information,

 + TEE SP AIK public key if DSI isn’t going to be included

 + Updated DSI data if requested

 * The response message is encrypted with the same JWE CEK of the
 request without recreating a new content encryption key.

 * The encrypted message is signed with TEEpriv. The signer
 information ("did" or TEEcert) is encrypted.

 4. Deliver response message. (a) The OTrP Broker returns this to the
 app; (b) The app passes this back to the TAM.

 5. TAM processing. (a) The TAM processes the response message; (b)
 The TAM can look up the signer certificate from the device ID
 "did".

 If a request is illegitimate or the signature doesn’t pass, a
 "status" property in the response will indicate the error code and
 cause.

Pei, et al. Expires November 16, 2019 [Page 50]

Internet-Draft OTrP May 2019

9.2.2.3. UpdateSDResponse Message

 The response message for a UpdateSDRequest contains the following
 content.

 {
 "UpdateSDTBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason": "<failure reason detail>", // optional
 "did": "<the device id hash>",
 "cert": "<TEE certificate>", // optional
 "teespaik": "<TEE SP AIK public key, BASE64 encoded>",
 "teespaiktype": "<TEE SP AIK key type: RSA or ECC>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TAM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - The request should have known the signer certificate of this
 device from a prior request. This hash value of the device TEE
 certificate serves as a quick identifier only. A full device
 certificate isn’t necessary.

 teespaik - the newly generated SP AIK public key for the given SP
 if the TEE SP AIK for the SP is asked to be renewed in the request.
 This is an optional value if "dsi" is included in the response,
 which will contain all up-to-date TEE SP AIK key pairs.

 Similar to the template for the creation of the encrypted and signed
 CreateSDResponse, the final UpdateSDResponse looks like the
 following.

Pei, et al. Expires November 16, 2019 [Page 51]

Internet-Draft OTrP May 2019

 {
 "UpdateSDResponse": {
 "payload": "<UpdateSDTBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device private
 key (BASE64URL)>"
 }
 }

 When the TEE fails to respond, the OTrP Broker will not provide a
 subsequent response to the TAM. The TAM should treat this as if the
 device has gone offline where a response is never delivered back.

9.2.2.4. Error Conditions

 An error may occur if a request isn’t valid or the TEE runs into some
 error. The list of possible errors are as follows. Refer to the
 Error Code List (Section 13.1) for detailed causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_SDNAME_ALREADY_USED

 ERR_SPCERT_INVALID

 ERR_TEE_FAIL

 ERR_TAM_NOT_AUTHORIZED

 ERR_TAM_NOT_TRUSTED

9.2.3. DeleteSD

 A TAM sends a DeleteSDRequest message to a TEE to delete a specified
 SD that it owns. An SD can be deleted only if there is no TA
 associated with this SD in the device. The request message can

Pei, et al. Expires November 16, 2019 [Page 52]

Internet-Draft OTrP May 2019

 contain a flag to instruct the TEE to delete all related TAs in an SD
 and then delete the SD.

 The target TEE will operate with the following logic.

 1. Look up the given SD specified in the request message

 2. Check that the TAM owns the SD

 3. Check that the device state hasn’t changed since the last
 operation

 4. Check whether there are TAs in this SD

 5. If TA exists in an SD, check whether the request instructs
 whether the TA should be deleted. If the request instructs the
 TEE to delete TAs, delete all TAs in this SD. If the request
 doesn’t instruct the TEE to delete TAs, return an error
 "ERR_SD_NOT_EMPTY".

 6. Delete the SD

 7. If this is the last SD of this SP, delete the TEE SP AIK key.

9.2.3.1. DeleteSDRequest Message

 The request message for DeleteSD has the following JSON format.

 {
 "DeleteSDTBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>", // this may be from prior message
 "tee": "<TEE routing name from the DSI for the SD’s target>",
 "nextdsi": true | false,
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED { // this piece of JSON will be encrypted
 "tamid": "<tamid associated with this SD>",
 "sdname": "<SD name for the domain to be updated>",
 "deleteta": true | false
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

Pei, et al. Expires November 16, 2019 [Page 53]

Internet-Draft OTrP May 2019

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous response
 GetDeviceStateResponse

 nextdsi - Indicates whether the up-to-date Device State Information
 (DSI) is to be returned in the response to this request.

 dsihash - The BASE64-encoded SHA256 hash value of the DSI data
 returned in the prior TAM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidentally overwriting an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE’s public key.

 tamid - SD owner claim by TAM - an SD owned by a TAM will be
 associated with a trusted identifier defined as an attribute in the
 signer TAM certificate.

 sdname - the name of the target SD to be updated.

 deleteta - the value should be boolean ’true’ or ’false’. If it is
 present and the value is ’true’, the TEE should delete all TAs
 associated with the SD in the device.

 According to the OTrP message template, the full request
 DeleteSDRequest is a signed message over the DeleteSDTBSRequest as
 follows.

 {
 "DeleteSDRequest": {
 "payload": "<DeleteSDTBSRequest JSON above>",
 "protected": "<integrity-protected header contents>",
 "header": "<non-integrity-protected header contents>",
 "signature": "<signature contents signed by TAM private key>"
 }
 }

 TAM signer certificate is included in the "header" property.

Pei, et al. Expires November 16, 2019 [Page 54]

Internet-Draft OTrP May 2019

9.2.3.2. Request Processing Requirements at a TEE

 Upon receiving a request message DeleteSDRequest at a TEE, the TEE
 must validate a request:

 1. Validate the JSON request message

 * Validate JSON message signing

 * Validate that the request TAM certificate is chained to a
 trusted CA that the TEE embeds as its trust anchor. The TAM
 certificate status check is generally not needed anymore in
 this request. The prior request should have validated the TAM
 certificate’s revocation status.

 * Compare dsihash with the TEE cached last response DSI data to
 this TAM

 * Decrypt to get the plaintext of the content

 * Check that the target SD name is supplied

 * Check whether the requested SD exists

 * Check that the TAM owns this TAM by verifying that the tamid
 in the SD matches the TAM certificate’s TAM ID attribute

 * Now the TEE is ready to carry out the update listed in the
 "content" message

 2. If the request is valid, deletion action

 * Check TA existence in this SD

 * If "deleteta" is "true", delete all TAs in this SD. If the
 value of "deleteta" is false and some TA exists, return an
 error "ERR_SD_NOT_EMPTY"

 * Delete the SD

 * Delete the TEE SP AIK key pair if this SD is the last one for
 the SP

 * Now the TEE is ready to construct the response message

 3. Construct a DeleteSDResponse message

 * Create response content

Pei, et al. Expires November 16, 2019 [Page 55]

Internet-Draft OTrP May 2019

 + Operation status

 + "did" or full signer certificate information,

 + Updated DSI data if requested

 * The response message is encrypted with the same JWE CEK of the
 request without recreating a new content encryption key.

 * The encrypted message is signed with TEEpriv. The signer
 information ("did" or TEEcert) is encrypted.

 4. Deliver response message. (a) The OTrP Broker returns this to the
 app; (b) The app passes this back to the TAM

 5. TAM processing. (a) The TAM processes the response message; (b)
 The TAM can look up signer certificate from the device ID "did".

 If a request is illegitimate or the signature doesn’t pass, a
 "status" property in the response will indicate the error code and
 cause.

9.2.3.3. DeleteSDResponse Message

 The response message for a DeleteSDRequest contains the following
 content.

 {
 "DeleteSDTBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason": "<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TAM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - The request should have known the signer certificate of this
 device from a prior request. This hash value of the device TEE
 certificate serves as a quick identifier only. A full device
 certificate isn’t necessary.

Pei, et al. Expires November 16, 2019 [Page 56]

Internet-Draft OTrP May 2019

 The final DeleteSDResponse looks like the following.

 {
 "DeleteSDResponse": {
 "payload": "<DeleteSDTBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 When the TEE fails to respond, the OTrP Broker will not provide a
 subsequent response to the TAM. The TAM should treat this as if the
 device has gone offline where a response is never delivered back.

9.2.3.4. Error Conditions

 An error may occur if a request isn’t valid or the TEE runs into some
 error. The list of possible errors is as follows. Refer to the
 Error Code List (Section 13.1) for detailed causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_EMPTY

 ERR_SD_NOT_FOUND

 ERR_TEE_FAIL

 ERR_TAM_NOT_AUTHORIZED

 ERR_TAM_NOT_TRUSTED

9.3. Trusted Application Management

 This protocol doesn’t introduce a TA container concept. All TA
 authorization and management will be up to the TEE implementation.

 The following three TA management commands are supported.

Pei, et al. Expires November 16, 2019 [Page 57]

Internet-Draft OTrP May 2019

 o InstallTA - provision a TA by TAM

 o UpdateTA - update a TA by TAM

 o DeleteTA - remove TA registration information with an SD, remove
 the TA binary and all TA-related data in a TEE

9.3.1. InstallTA

 TA binary data and related personalization data if there is any can
 be from two sources:

 1. A TAM supplies the signed and encrypted TA binary

 2. A Client Application supplies the TA binary

 This specification primarily considers the first case where a TAM
 supplies a TA binary. This is to ensure that a TEE can properly
 validate whether a TA is trustworthy. Further, TA personalization
 data will be encrypted by the TEE device’s SP public key for end-to-
 end protection. A Client Application bundled TA case will be
 addressed separately later.

 A TAM sends the following information in a InstallTARequest message
 to a target TEE:

 o The target SD information: SP ID and SD name

 o Encrypted TA binary data. TA data is encrypted with the TEE SP
 AIK.

 o TA metadata. It is optional to include the SP signer certificate
 for the SD to add if the SP has changed signer since the SD was
 created.

 The TEE processes the command given by the TAM to install a TA into
 an SP’s SD. It does the following:

 o Validation

 * The TEE validates the TAM message authenticity

 * Decrypt to get request content

 * Look up the SD with the SD name

 * Checks that the TAM owns the SD

Pei, et al. Expires November 16, 2019 [Page 58]

Internet-Draft OTrP May 2019

 * Checks that the DSI hash matches which shows that the device
 state hasn’t changed

 o If the request is valid, continue to do the TA validation

 * Decrypt to get the TA binary data and any personalization data
 with the "TEE SP AIK private key"

 * Check that SP ID is the one that is registered with the SP SD

 * Check that the TA signer is either a newly given SP certificate
 or the one that is already trusted by the SD from the previous
 TA installation. The TA signing method is specific to a TEE.
 This specification doesn’t define how a TA should be signed; a
 TAM should support TEE specific TA signing when it supports
 that TEE.

 * If a TA signer is given in the request, add this signer into
 the SD.

 o If the above validation passed, continue to do TA installation

 * The TEE re-encrypts the TA binary and its personalization data
 with its own method.

 * The TEE enrolls and stores the TA in a secure storage.

 o Construct a response message. This involves signing encrypted
 status information for the requesting TAM.

9.3.1.1. InstallTARequest Message

Pei, et al. Expires November 16, 2019 [Page 59]

Internet-Draft OTrP May 2019

 The request message for InstallTA has the following JSON format.

 {
 "InstallTATBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>",
 "tee": "<TEE routing name from the DSI for the SD’s target>",
 "nextdsi": true | false,
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED {
 "tamid": "<TAM ID previously assigned to the SD>",
 "spid": "<SPID value>",
 "sdname": "<SD name for the domain to install the TA>",
 "spcert": "<BASE64 encoded SP certificate >", // optional
 "taid": "<TA identifier>"
 },
 "encrypted_ta": {
 "key": "<JWE enveloped data of a 256-bit symmetric key by
 the recipient’s TEEspaik public key>",
 "iv": "<hex of 16 random bytes>",
 "alg": "<encryption algoritm. AESCBC by default.",
 "ciphertadata": "<BASE64 encoded encrypted TA binary data>",
 "cipherpdata": "<BASE64 encoded encrypted TA personalization
 data>"
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous GetDeviceStateResponse

 nextdsi - Indicates whether the up-to-date Device State Information
 (DSI) is to be returned in the response to this request.

 dsihash - The BASE64-encoded SHA256 hash value of the DSI data
 returned in the prior TAM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidentally overwriting an update that was done simultaneously.

Pei, et al. Expires November 16, 2019 [Page 60]

Internet-Draft OTrP May 2019

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE’s public key.

 tamid - SD owner claim by TAM - An SD owned by a TAM will be
 associated with a trusted identifier defined as an attribute in the
 signer TAM certificate.

 spid - SP identifier of the TA owner SP

 sdname - the name of the target SD where the TA is to be installed

 spcert - an optional field to specify the SP certificate that signed
 the TA. This is sent if the SP has a new certificate that hasn’t
 been previously registered with the target SD where the TA should
 be installed.

 taid - the identifier of the TA application to be installed

 encrypted_ta - the message portion contains encrypted TA binary data
 and personalization data. The TA data encryption key is placed in
 "key", which is encrypted by the recipient’s public key, using JWE
 enveloped structure. The TA data encryption uses symmetric key
 based encryption such as AESCBC.

 According to the OTrP message template, the full request
 InstallTARequest is a signed message over the InstallTATBSRequest as
 follows.

 {
 "InstallTARequest": {
 "payload": "<InstallTATBSRequest JSON above>",
 "protected": "<integrity-protected header contents>",
 "header": "<non-integrity-protected header contents>",
 "signature": "<signature contents signed by TAM private key>"
 }
 }

9.3.1.2. InstallTAResponse Message

 The response message for a InstallTARequest contains the following
 content.

Pei, et al. Expires November 16, 2019 [Page 61]

Internet-Draft OTrP May 2019

 {
 "InstallTATBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason":"<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TAM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - the SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TAM.

 The final message InstallTAResponse looks like the following.

 {
 "InstallTAResponse": {
 "payload":"<InstallTATBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 When the TEE fails to respond, the OTrP Broker will not provide a
 subsequent response to the TAM. The TAM should treat this as if the
 device has gone offline where a response is never delivered back.

9.3.1.3. Error Conditions

 An error may occur if a request isn’t valid or the TEE runs into some
 error. The list of possible errors are as follows. Refer to the
 Error Code List (Section 13.1) for detailed causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

Pei, et al. Expires November 16, 2019 [Page 62]

Internet-Draft OTrP May 2019

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_TA_INVALID

 ERR_TA_ALREADY_INSTALLED

 ERR_TEE_FAIL

 ERR_TEE_RESOURCE_FULL

 ERR_TAM_NOT_AUTHORIZED

 ERR_TAM_NOT_TRUSTED

9.3.2. UpdateTA

 This TAM-initiated command can update a TA and its data in an SP’s SD
 that it manages for the following purposes.

 1. Update TA binary

 2. Update TA’s personalization data

 The TAM presents the proof of the SD ownership to a TEE, and includes
 related information in its signed message. The entire request is
 also encrypted for end-to-end confidentiality.

 The TEE processes the command from the TAM to update the TA of an SP
 SD. It does the following:

 o Validation

 * The TEE validates the TAM message authenticity

 * Decrypt to get request content

 * Look up the SD with the SD name

 * Checks that the TAM owns the SD

 * Checks DSI hash matches that the device state hasn’t changed

 o TA validation

Pei, et al. Expires November 16, 2019 [Page 63]

Internet-Draft OTrP May 2019

 * Both TA binary and personalization data are optional, but at
 least one of them shall be present in the message

 * Decrypt to get the TA binary and any personalization data with
 the "TEE SP AIK private key"

 * Check that SP ID is the one that is registered with the SP SD

 * Check that the TA signer is either a newly given SP certificate
 or the one in SD.

 * If a TA signer is given in the request, add this signer into
 the SD.

 o If the above validation passes, continue to do TA update

 * The TEE re-encrypts the TA binary and its personalization data
 with its own method

 * The TEE replaces the existing TA binary and its personalization
 data with the new binary and data.

 o Construct a response message. This involves signing a encrypted
 status information for the requesting TAM.

9.3.2.1. UpdateTARequest Message

Pei, et al. Expires November 16, 2019 [Page 64]

Internet-Draft OTrP May 2019

 The request message for UpdateTA has the following JSON format.

 {
 "UpdateTATBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>",
 "tee": "<TEE routing name from the DSI for the SD’s target>",
 "nextdsi": true | false,
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED {
 "tamid": "<TAM ID previously assigned to the SD>",
 "spid": "<SPID value>",
 "sdname": "<SD name for the domain to be created>",
 "spcert": "<BASE64 encoded SP certificate >", // optional
 "taid": "<TA identifier>"
 },
 "encrypted_ta": {
 "key": "<JWE enveloped data of a 256-bit symmetric key by
 the recipient’s TEEspaik public key>",
 "iv": "<hex of 16 random bytes>",
 "alg": "<encryption algoritm. AESCBC by default.",
 "ciphernewtadata": "<Change existing TA binary to this new TA
 binary data(BASE64 encoded and encrypted)>",
 "ciphernewpdata": "<Change the existing data to this new TA
 personalization data(BASE64 encoded and encrypted)>"
 // optional
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous GetDeviceStateResponse

 nextdsi - Indicates whether the up-to-date Device State Information
 (DSI) is to be returned in the response to this request.

 dsihash - The BASE64-encoded SHA256 hash value of the DSI data
 returned in the prior TAM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It

Pei, et al. Expires November 16, 2019 [Page 65]

Internet-Draft OTrP May 2019

 helps enforce SD update order in the right sequence without
 accidentally overwriting an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE’s public key.

 tamid - SD owner claim by TAM - an SD owned by a TAM will be
 associated with a trusted identifier defined as an attribute in the
 signer TAM certificate.

 spid - SP identifier of the TA owner SP

 spcert - an optional field to specify the SP certificate that signed
 the TA. This is sent if the SP has a new certificate that hasn’t
 been previously registered with the target SD where the TA is to be
 installed.

 sdname - the name of the target SD where the TA should be updated

 taid - an identifier for the TA application to be updated

 encrypted_ta - the message portion contains newly encrypted TA
 binary data and personalization data.

 According to the OTrP message template, the full request
 UpdateTARequest is a signed message over the UpdateTATBSRequest as
 follows.

 {
 "UpdateTARequest": {
 "payload": "<UpdateTATBSRequest JSON above>",
 "protected": "<integrity-protected header contents>",
 "header": "<non-integrity-protected header contents>",
 "signature": "<signature contents signed by TAM private key>"
 }
 }

9.3.2.2. UpdateTAResponse Message

 The response message for a UpdateTARequest contains the following
 content.

Pei, et al. Expires November 16, 2019 [Page 66]

Internet-Draft OTrP May 2019

 {
 "UpdateTATBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason": "<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TAM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - the SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TAM.

 The final message UpdateTAResponse looks like the following.

 {
 "UpdateTAResponse": {
 "payload":"<UpdateTATBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 When the TEE fails to respond, the OTrP Broker will not provide a
 subsequent response to the TAM. The TAM should treat this as if the
 device has gone offline where a response is never delivered back.

9.3.2.3. Error Conditions

 An error may occur if a request isn’t valid or the TEE runs into some
 error. The list of possible errors are as follows. Refer to the
 Error Code List (Section 13.1) for detailed causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

Pei, et al. Expires November 16, 2019 [Page 67]

Internet-Draft OTrP May 2019

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_TA_INVALID

 ERR_TA_NOT_FOUND

 ERR_TEE_FAIL

 ERR_TAM_NOT_AUTHORIZED

 ERR_TAM_NOT_TRUSTED

9.3.3. DeleteTA

 This operation defines OTrP messages that allow a TAM to instruct a
 TEE to delete a TA for an SP in a given SD. A TEE will delete a TA
 from an SD and also TA data in the TEE. A Client Application cannot
 directly access TEE or OTrP Broker to delete a TA.

9.3.3.1. DeleteTARequest Message

 The request message for DeleteTA has the following JSON format.

 {
 "DeleteTATBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>",
 "tee": "<TEE routing name from the DSI for the SD’s target>",
 "nextdsi": true | false,
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED {
 "tamid": "<TAM ID previously assigned to the SD>",
 "sdname": "<SD name of the TA>",
 "taid": "<the identifier of the TA to be deleted from the
 specified SD>"
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

Pei, et al. Expires November 16, 2019 [Page 68]

Internet-Draft OTrP May 2019

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - The TEE ID returned from the previous GetDeviceStateResponse

 nextdsi - Indicates whether the up-to-date Device State Information
 (DSI) is to be returned in the response to this request.

 dsihash - The BASE64-encoded SHA256 hash value of the DSI data
 returned in the prior TAM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidentally overwriting an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE’s public key.

 tamid - SD owner claim by TAM - an SD owned by a TAM will be
 associated with a trusted identifier defined as an attribute in the
 signer TAM certificate.

 sdname - the name of the target SD where the TA is installed

 taid - an identifier for the TA application to be deleted

 According to the OTrP message template, the full request
 DeleteTARequest is a signed message over the DeleteTATBSRequest as
 follows.

 {
 "DeleteTARequest": {
 "payload": "<DeleteTATBSRequest JSON above>",
 "protected": "<integrity-protected header contents>",
 "header": "<non-integrity-protected header contents>",
 "signature": "<signature contents signed by TAM
 private key>"
 }
 }

Pei, et al. Expires November 16, 2019 [Page 69]

Internet-Draft OTrP May 2019

9.3.3.2. Request Processing Requirements at a TEE

 A TEE processes a command from a TAM to delete a TA of an SP SD. It
 does the following:

 1. Validate the JSON request message

 * The TEE validates TAM message authenticity

 * Decrypt to get request content

 * Look up the SD and the TA with the given SD name and TA ID

 * Checks that the TAM owns the SD, and TA is installed in the SD

 * Checks that the DSI hash matches and the the device state
 hasn’t changed

 2. Deletion action

 * If all the above validation points pass, the TEE deletes the
 TA from the SD

 * The TEE SHOULD also delete all personalization data for the TA

 3. Construct DeleteTAResponse message.

 If a request is illegitimate or the signature doesn’t pass, a
 "status" property in the response will indicate the error code and
 cause.

9.3.3.3. DeleteTAResponse Message

 The response message for a DeleteTARequest contains the following
 content.

Pei, et al. Expires November 16, 2019 [Page 70]

Internet-Draft OTrP May 2019

 {
 "DeleteTATBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason": "<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TAM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - the SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TAM.

 The final message DeleteTAResponse looks like the following.

 {
 "DeleteTAResponse": {
 "payload": "<DeleteTATBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 When the TEE fails to respond, the OTrP Broker will not provide a
 subsequent response to the TAM. The TAM should treat this as if the
 device has gone offline where a response is never delivered back.

9.3.3.4. Error Conditions

 An error may occur if a request isn’t valid or the TEE runs into some
 error. The list of possible errors are as follows. Refer to the
 Error Code List (Section 13.1) for detailed causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

Pei, et al. Expires November 16, 2019 [Page 71]

Internet-Draft OTrP May 2019

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_TA_NOT_FOUND

 ERR_TEE_FAIL

 ERR_TAM_NOT_AUTHORIZED

 ERR_TAM_NOT_TRUSTED

10. Response Messages a TAM May Expect

 A TAM expects some feedback from a remote device when a request
 message is delivered to a device. The following three types of
 responses SHOULD be supplied.

 Type 1: Expect a valid TEE-generated response message

 A valid TEE signed response may contain errors detected by a TEE,
 e.g. a TAM is trusted but some TAM-supplied data is missing, for
 example, SP ID doesn’t exist. TEE MUST be able to sign and
 encrypt.

 If a TEE isn’t able to sign a response, the TEE returns an error
 to the OTrP Broker without giving any other internal information.
 The OTrP Broker will be generating the response.

 Type 2: The OTrP Broker generated error message when TEE fails.
 OTrP Broker errors will be defined in this document.

 A Type 2 message has the following format.

 {
 "OTrPBrokerError": {
 "ver": "1.0",
 "rid": "",
 "tid": "",
 "errcode": "ERR_AGENT_TEE_UNKNOWN | ERR_AGENT_TEE_BUSY"
 }
 }

 Type 3: OTrP Broker itself isn’t reachable or fails. A Client
 Application is responsible to handle error and respond the TAM in
 its own way. This is out of scope for this specification.

Pei, et al. Expires November 16, 2019 [Page 72]

Internet-Draft OTrP May 2019

11. Basic Protocol Profile

 This section describes a baseline for interoperability among the
 protocol entities, mainly, the TAM and TEE.

 A TEE MUST support RSA algorithms. It is optional to support ECC
 algorithms. A TAM SHOULD use a RSA certificate for TAM message
 signing. It may use an ECC certificate if it detects that the TEE
 supports ECC according to the field "supportedsigalgs" in a TEE
 response.

 A TAM MUST support both RSA 2048-bit algorithm and ECC P-256
 algorithms. With this, a TEE and TFW certificate can be either RSA
 or ECC type.

 JSON signing algorithms

 o RSA PKCS#1 with SHA256 signing : "RS256"

 o ECDSA with SHA256 signing : "ES256"

 JSON asymmetric encryption algorithms (describes key-exchange or key-
 agreement algorithm for sharing symmetric key with TEE):

 o RSA PKCS#1 : "RSA1_5"

 o ECDH using TEE ECC P-256 key and ephemeral ECC key generated by
 TAM : "ECDH-ES+A128W"

 JSON symmetric encryption algorithms (describes symmetric algorithm
 for encrypting body of data, using symmetric key transferred to TEE
 using asymmetric encryption):

 o Authenticated encryption AES 128 CBC with SHA256 :
 {"enc":"A128CBC-HS256"}

12. Attestation Implementation Consideration

 It is important to know that the state of a device is appropriate
 before trusting that a device is what it says it is. The attestation
 scheme for OTrP must also be able to cope with different TEEs,
 including those that are OTrP compliant and those that use another
 mechanism. In the initial version, only one active TEE is assumed.

 It is out of scope how the TAM and the device implement the trust
 hierarchy verification. However, it is helpful to understand what
 each system provider should do in order to properly implement an OTrP
 trust hierarchy.

Pei, et al. Expires November 16, 2019 [Page 73]

Internet-Draft OTrP May 2019

 In this section, we provide some implementation reference
 consideration.

12.1. OTrP Trusted Firmware

12.1.1. Attestation signer

 It is proposed that attestation for OTrP is based on the TFW layer,
 and that further attestation is not performed within the TEE itself
 during Security Domain operations. The rationale is that the device
 boot process will be defined to start with a secure bootloader
 protected with a harden key in eFUSE. The process releases
 attestation signing capabilities into the TFW once a trust boot has
 been established. In this way the release of the attestation signer
 can be considered the first "platform configuration metric", using
 Trust Computing Group (TCG) terminology.

12.1.2. TFW Initial Requirements

 R1 The TFW must be possible for verification during boot

 R2 The TFW must allow a public / private key pair to be generated
 during device manufacture

 R3 The public key and certificate must be possible to store securely

 R4 The private key must be possible to store encrypted at rest

 R5 The private key must only be visible to the TFW when it is
 decrypted

 R6 The TFW must be able to read a list of root and intermediate
 certificates that it can use to check certificate chains with.
 The list must be stored such that it cannot be tampered with

 R7 Need to allow a TEE to access its unique TEE specific private key

12.2. TEE Loading

 During boot, the TFW is required to start all of the root TEEs.
 Before loading them, the TFW must first determine whether the code
 sign signature of the TEE is valid. If TEE integrity is confirmed,
 the TEE may be started. The TFW must then be able to receive the
 identity certificate from the TEE (if that TEE is OTrP compliant).
 The identity certificate and keys will need to be baked into the TEE
 image, and therefore also covered by the code signer hash during the
 manufacturing process. The private key for the identity certificate
 must be securely protected. The private key for a TEE identity must

Pei, et al. Expires November 16, 2019 [Page 74]

Internet-Draft OTrP May 2019

 never be released no matter how the public key and certificate are
 released to the TFW.

 Once the TFW has successfully booted a TEE and retrieved the identity
 certificate, the TFW will commit this to the platform configuration
 register (PCR) set, for later use during attestation. At minimum,
 the following data must be committed to the PCR for each TEE:

 1. Public key and certificate for the TEE

 2. TEE identifier that can be used later by a TAM to identify this
 TEE

12.3. Attestation Hierarchy

 The attestation hierarchy and seed required for TAM protocol
 operation must be built into the device at manufacture. Additional
 TEEs can be added post-manufacture using the scheme proposed, but it
 is outside of the current scope of this document to detail that.

 It should be noted that the attestation scheme described is based on
 signatures. The only decryption that may take place is through the
 use of a bootloader key.

12.3.1. Attestation Hierarchy Establishment: Manufacture

 During manufacture the following steps are required:

 1. A device-specific TFW key pair and certificate are burnt into the
 device. This key pair will be used for signing operations
 performed by the TFW.

 2. TEE images are loaded and include a TEE instance-specific key
 pair and certificate. The key pair and certificate are included
 in the image and covered by the code signing hash.

 3. The process for TEE images is repeated for any subordinate TEEs,
 which are additional TEEs after the root TEE that some devices
 have.

12.3.2. Attestation Hierarchy Establishment: Device Boot

 During device boot the following steps are required:

 1. The boot module releases the TFW private key by decrypting it
 with the bootloader key.

Pei, et al. Expires November 16, 2019 [Page 75]

Internet-Draft OTrP May 2019

 2. The TFW verifies the code-signing signature of the active TEE and
 places its TEE public key into a signing buffer, along with its
 identifier for later access. For a non-OTrP TEE, the TFW leaves
 the TEE public key field blank.

 3. The TFW signs the signing buffer with the TFW private key.

 4. Each active TEE performs the same operation as the TFW, building
 up their own signed buffer containing subordinate TEE
 information.

12.3.3. Attestation Hierarchy Establishment: TAM

 Before a TAM can begin operation in the marketplace to support
 devices of a given TEE, it must obtain a TAM certificate from a CA
 that is registered in the trust store of devices with that TEE. In
 this way, the TEE can check the intermediate and root CA and verify
 that it trusts this TAM to perform operations on the TEE.

13. IANA Considerations

 There are two IANA requests: a media type and list of error codes.

 This section first requests that IANA assign a media type:
 application/otrp+json.

 Type name: application

 Subtype name: otrp+json

 Required parameters: none

 Optional parameters: none

 Encoding considerations: Same as encoding considerations of
 application/json as specified in Section 11 of [RFC7159]

 Security considerations: See Section 12 of [RFC7159] and Section 14
 of this document

 Interoperability considerations: Same as interoperability
 considerations of application/json as specified in [RFC7159]

 Published specification: [TEEPArch]

 Applications that use this media type: OTrP implementations

 Fragment identifier considerations: N/A

Pei, et al. Expires November 16, 2019 [Page 76]

Internet-Draft OTrP May 2019

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person to contact for further information: teep@ietf.org

 Intended usage: COMMON

 Restrictions on usage: none

 Author: See the "Authors’ Addresses" section of this document

 Change controller: IETF

 The error code listed in the next section will be registered.

13.1. Error Code List

 This section lists error codes that could be reported by a TA or TEE
 in a device in responding to a TAM request, and a separate list that
 OTrP Broker may return when the TEE fails to respond.

13.1.1. TEE Signed Error Code List

 ERR_DEV_STATE_MISMATCH - A TEE will return this error code if the
 DSI hash value from TAM doesn’t match the has value of the device’s
 current DSI.

 ERR_SD_ALREADY_EXISTS - This error will occur if an SD to be created
 already exists in the TEE.

 ERR_SD_NOT_EMPTY - This is reported if a target SD isn’t empty.

 ERR_SDNAME_ALREADY_USED A TEE will return this error code if the new
 SD name already exists in the TEE.

 ERR_REQUEST_INVALID - This error will occur if the TEE meets any of
 the following conditions with a request message: (1) The request
 from a TAM has an invalid message structure; mandatory information
 is absent in the message. undefined member or structure is
 included. (2) TEE fails to verify signature of the message or
 fails to decrypt its contents.

Pei, et al. Expires November 16, 2019 [Page 77]

Internet-Draft OTrP May 2019

 ERR_SPCERT_INVALID - If a new SP certificate for the SD to be
 updated is not valid, then the TEE will return this error code.

 ERR_TA_ALREADY_INSTALLED - While installing a TA, a TEE will return
 this error if the TA has already been installed in the SD.

 ERR_TA_INVALID - This error will occur when a TEE meets any of
 following conditions while checking validity of TA: (1) The TA
 binary has a format that the TEE can’t recognize. (2) The TEE fails
 to decrypt the encoding of the TA binary and personalization data.
 (3) If an SP isn’t registered with the SP SD where the TA will be
 installed.

 ERR_TA_NOT_FOUND - This error will occur when the target TA doesn’t
 exist in the SD.

 ERR_TEE_FAIL - If the TEE fails to process a request because of an
 internal error, it will return this error code.

 ERR_TEE_RESOURCE_FULL - This error is reported when a device
 resource isn’t available anymore such as storage space is full.

 ERR_TFW_NOT_TRUSTED - A TEE is responsible for determining that the
 underlying device firmware is trustworthy. If the TEE determines
 the TFW is not trustworthy, then this error will occur.

 ERR_TAM_NOT_TRUSTED - Before processing a request, a TEE needs to
 make sure whether the sender TAM is trustworthy by checking the
 validity of the TAM certificate, etc. If the TEE finds that the
 TAM is not trustworthy, then it will return this error code.

 ERR_UNSUPPORTED_CRYPTO_ALG - This error will occur if a TEE receives
 a request message encoded with cryptographic algorithms that the
 TEE doesn’t support.

 ERR_UNSUPPORTED_MSG_VERSION - This error will occur if a TEE
 receives a message version that the TEE can’t deal with.

14. Security Consideration

14.1. Cryptographic Strength

 The strength of the cryptographic algorithms, using the measure of
 ’bits of security’ defined in NIST SP800-57 allowed for OTrP is:

 o At a minimum, 112 bits of security. The limiting factor for this
 is the RSA-2048 algorithm, which is indicated as providing 112
 bits of symmetric key strength in SP800-57. It is important that

Pei, et al. Expires November 16, 2019 [Page 78]

Internet-Draft OTrP May 2019

 RSA is supported in order to enhance the interoperability of the
 protocol.

 o The option exists to choose algorithms providing 128 bits of
 security. This requires using TEE devices that support ECC P256.

 The available algorithms and key sizes specified in this document are
 based on industry standards. Over time the recommended or allowed
 cryptographic algorithms may change. It is important that the OTrP
 allows for crypto-agility. In this specification, TAM and TEE can
 negotiate an agreed upon algorithm where both include their supported
 algorithm in OTrP message.

14.2. Message Security

 OTrP messages between the TAM and TEE are protected by message
 security using JWS and JWE. The ’Basic protocol profile’ section of
 this document describes the algorithms used for this. All OTrP TEE
 devices and OTrP TAMs must meet the requirements of the basic
 profile. In the future additional ’profiles’ can be added.

 PKI is used to ensure that the TEE will only communicate with a
 trusted TAM, and to ensure that the TAM will only communicate with a
 trusted TEE.

14.3. TEE Attestation

 It is important that the TAM can trust that it is talking to a
 trusted TEE. This is achieved through attestation. The TEE has a
 private key and certificate built into it at manufacture, which is
 used to sign data supplied by the TAM. This allows the TAM to verify
 that the TEE is trusted.

 It is also important that the TFW (trusted firmware) can be checked.
 The TFW has a private key and certificate built into it at
 manufacture, which allows the TEE to check that that the TFW is
 trusted.

 The GetDeviceState message therefore allows the TAM to check that it
 trusts the TEE, and the TEE at this point will check whether it
 trusts the TFW.

14.4. TA Protection

 A TA will be delivered in an encrypted form. This encryption is an
 additional layer within the message encryption described in the
 Section 11 of this document. The TA binary is encrypted for each
 target device with the device’s TEE SP AIK public key. A TAM can

Pei, et al. Expires November 16, 2019 [Page 79]

Internet-Draft OTrP May 2019

 either do this encryption itself or provide the TEE SP AIK public key
 to an SP such that the SP encrypts the encrypted TA for distribution
 to the TEE.

 The encryption algorithm can use a random AES 256 key "taek" with a
 16 byte random IV, and the "taek" is encrypted by the "TEE SP AIK
 public key". The following encrypted TA data structure is expected
 by a TEE:

 "encrypted_ta_bin": {
 "key": "<JWE enveloped data of a 256-bit symmetric key by
 the recipient’s TEEspaik public key>",
 "iv": <hex of 16 random bytes>",
 "alg": "AESCBC",
 "cipherdata": "<BASE64 encoded encrypted TA binary data>"
 }

14.5. TA Personalization Data

 An SP or TAM can supply personalization data for a TA to initialize
 for a device. Such data is passed through an InstallTA command from
 a TAM. The personalization data itself is (or can be) opaque to the
 TAM. The data can be from the SP without being revealed to the TAM.
 The data is sent in an encrypted manner in a request to a device such
 that only the device can decrypt. A device’s TEE SP AIK public key
 for an SP is used to encrypt the data. Here JWE enveloping is used
 to carry all encryption key parameters along with encrypted data.

 "encrypted_ta_data": { // "TA personalization data"
 "key": "<JWE enveloped data of a 256-bit symmetric key by
 the recipient’s TEEspaik public key>",
 "iv": "<hex of 16 random bytes>",
 "alg": "AESCBC",
 "cipherdata": "<BASE64 encoded encrypted TA personalization
 data>"
 }

14.6. TA Trust Check at TEE

 A TA binary is signed by a TA signer certificate. This TA signing
 certificate/private key belongs to the SP, and may be self-signed
 (i.e., it need not participate in a trust hierarchy). It is the
 responsibility of the TAM to only allow verified TAs from trusted SPs
 into the system. Delivery of that TA to the TEE is then the
 responsibility of the TEE, using the security mechanisms provided by
 the OTrP.

Pei, et al. Expires November 16, 2019 [Page 80]

Internet-Draft OTrP May 2019

 We allow a way for an (untrusted) application to check the
 trustworthiness of a TA. OTrP Broker has a function to allow a
 Client Application to query the information about a TA.

 An application in the Rich O/S may perform verification of the TA by
 verifying the signature of the TA. The GetTAInformation function is
 available to return the TEE supplied TA signer and TAM signer
 information to the application. An application can do additional
 trust checks on the certificate returned for this TA. It might trust
 the TAM, or require additional SP signer trust chaining.

14.7. One TA Multiple SP Case

 A TA for multiple SPs must have a different identifier per SP. A TA
 will be installed in a different SD for each respective SP.

14.8. OTrP Broker Trust Model

 An OTrP Broker could be malware in the vulnerable REE. A Client
 Application will connect its TAM provider for required TA
 installation. It gets command messages from the TAM, and passes the
 message to the OTrP Broker.

 The OTrP is a conduit for enabling the TAM to communicate with the
 device’s TEE to manage SDs and TAs. All TAM messages are signed and
 sensitive data is encrypted such that the OTrP Broker cannot modify
 or capture sensitive data.

14.9. OCSP Stapling Data for TAM Signed Messages

 The GetDeviceStateRequest message from a TAM to a TEE shall include
 OCSP stapling data for the TAM’s signer certificate and for
 intermediate CA certificates up to the root certificate so that the
 TEE can verify the signer certificate’s revocation status.

 A certificate revocation status check on a TA signer certificate is
 OPTIONAL by a TEE. A TAM is responsible for vetting a TA and the SP
 before it distributes them to devices. A TEE will trust a TA signer
 certificate’s validation status done by a TAM when it trusts the TAM.

14.10. Data Protection at TAM and TEE

 The TEE implementation provides protection of data on the device. It
 is the responsibility of the TAM to protect data on its servers.

Pei, et al. Expires November 16, 2019 [Page 81]

Internet-Draft OTrP May 2019

14.11. Privacy Consideration

 Devices are issued with a unique TEE certificate to attest the
 device’s validity. This uniqueness also creates a privacy and
 tracking risk that must be mitigated.

 The TEE will only release the TEE certificate to a trusted TAM (it
 must verify the TAM certificate before proceeding). OTrP is designed
 such that only a TAM can obtain the TEE device certificate and
 firmware certificate - the GetDeviceState message requires signature
 checks to validate the TAM is trusted, and OTrP delivers the device’s
 certificate(s) encrypted such that only that TAM can decrypt the
 response. A Client Application will never see the device
 certificate.

 An SP-specific TEE SP AIK (TEE SP Anonymous Key) is generated by the
 protocol for Client Applications. This provides a way for the Client
 Application to validate some data that the TEE may send without
 requiring the TEE device certificate to be released to the client
 device rich O/S , and to optionally allow an SP to encrypt a TA for a
 target device without the SP needing to be supplied with the TEE
 device certificate.

14.12. Threat Mitigation

 A rogue application may perform excessive TA loading. An OTrP Broker
 implementation should protect against excessive calls.

 Rogue applications might request excessive SD creation. The TAM is
 responsible to ensure this is properly guarded against.

 Rogue OTrP Broker could replay or send TAM messages out of sequence:
 e.g., a TAM sends update1 and update2. The OTrP Broker replays
 update2 and update1 again, creating an unexpected result that a
 client wants. "dsihash" is used to mitigate this. The TEE MUST store
 DSI state and check that the DSI state matches before it does another
 update.

 Concurrent calls from a TAM to a TEE MUST be handled properly by a
 TEE. If multiple concurrent TAM operations take place, these could
 fail due to the "dsihash" being modified by another concurrent
 operation. The TEE is responsible for resolve any locking such that
 one application cannot lock other applications from using the TEE,
 except for a short term duration of the TAM operation taking place.
 For example, an OTrP operation that starts but never completes (e.g.
 loss of connectivity) must not prevent subsequent OTrP messages from
 being executed.

Pei, et al. Expires November 16, 2019 [Page 82]

Internet-Draft OTrP May 2019

14.13. Compromised CA

 A root CA for TAM certificates might get compromised. Some TEE trust
 anchor update mechanism is expected from device OEMs. A compromised
 intermediate CA is covered by OCSP stapling and OCSP validation check
 in the protocol. A TEE should validate certificate revocation about
 a TAM certificate chain.

 If the root CA of some TEE device certificates is compromised, these
 devices might be rejected by a TAM, which is a decision of the TAM
 implementation and policy choice. Any intermediate CA for TEE device
 certificates SHOULD be validated by TAM with a Certificate Revocation
 List (CRL) or Online Certificate Status Protocol (OCSP) method.

14.14. Compromised TAM

 The TEE SHOULD use validation of the supplied TAM certificates and
 OCSP stapled data to validate that the TAM is trustworthy.

 Since PKI is used, the integrity of the clock within the TEE
 determines the ability of the TEE to reject an expired TAM
 certificate, or revoked TAM certificate. Since OCSP stapling
 includes signature generation time, certificate validity dates are
 compared to the current time.

14.15. Certificate Renewal

 TFW and TEE device certificates are expected to be long lived, longer
 than the lifetime of a device. A TAM certificate usually has a
 moderate lifetime of 2 to 5 years. A TAM should get renewed or
 rekeyed certificates. The root CA certificates for a TAM, which are
 embedded into the trust anchor store in a device, should have long
 lifetimes that don’t require device trust anchor update. On the
 other hand, it is imperative that OEMs or device providers plan for
 support of trust anchor update in their shipped devices.

15. Acknowledgements

 We thank Alin Mutu for his contribution to many discussion that
 helped to design the trust flow mechanisms, and the creation of the
 flow diagrams. We also thank the following people (in alphabetical
 order) for their input and review: Sangsu Baek, Rob Coombs, Dapeng
 Liu, Dave Thaler, and Pengfei Zhao.

Pei, et al. Expires November 16, 2019 [Page 83]

Internet-Draft OTrP May 2019

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [TEEPArch]
 Pei, M., Tschofenig, H., Atyeo, A., and D. Liu, "Trusted
 Execution Environment Provisioning (TEEP) Architecture",
 2018, <https://tools.ietf.org/html/
 draft-ietf-teep-architecture-02>.

16.2. Informative References

 [GPTEE] Global Platform, "Global Platform, GlobalPlatform Device
 Technology: TEE System Architecture, v1.0", 2013.

 [GPTEECLAPI]
 Global Platform, "Global Platform, GlobalPlatform Device
 Technology: TEE Client API Specification, v1.0", 2013.

Pei, et al. Expires November 16, 2019 [Page 84]

Internet-Draft OTrP May 2019

Appendix A. Sample Messages

A.1. Sample Security Domain Management Messages

A.1.1. Sample GetDeviceState

A.1.1.1. Sample GetDeviceStateRequest

 The TAM builds a "GetDeviceStateTBSRequest" message.

 {
 "GetDeviceStateTBSRequest": {
 "ver": "1.0",
 "rid": "8C6F9DBB-FC39-435c-BC89-4D3614DA2F0B",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "ocspdat": "c2FtcGxlIG9jc3BkYXQgQjY0IGVuY29kZWQgQVNOMQ==",
 "icaocspdat": "c2FtcGxlIGljYW9jc3BkYXQgQjY0IGVuY29kZWQgQVNOMQ==",
 "supportedsigalgs": "RS256"
 }
 }

 The TAM signs "GetDeviceStateTBSRequest", creating
 "GetDeviceStateRequest"

{
 "GetDeviceStateRequest": {
 "payload":"
 ewoJIkdldERldmljZVN0YXRlVEJTUmVxdWVzdCI6IHsKCQkidmVyIjogIjEuMCIsCgkJ
 InJpZCI6IHs4QzZGOURCQi1GQzM5LTQzNWMtQkM4OS00RDM2MTREQTJGMEJ9LAoJCSJ0
 aWQiOiAiezRGNDU0QTdGLTAwMkQtNDE1Ny04ODRFLUIwREQxQTA2QThBRX0iLAoJCSJv
 Y3NwZGF0IjogImMyRnRjR3hsSUc5amMzQmtZWFFnUWpZMElHVnVZMjlrWldRZ1FWTk9N
 UT09IiwKCQkiaWNhb2NzcGRhdCI6ICJjMkZ0Y0d4bElHbGpZVzlqYzNCa1lYUWdRalkw
 SUdWdVkyOWtaV1FnUVZOT01RPT0iLAoJCSJzdXBwb3J0ZWRzaWdhbGdzIjogIlJTMjU2
 IgoJfQp9",
 "protected": "eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "x5c": ["ZXhhbXBsZSBBU04xIHNpZ25lciBjZXJ0aWZpY2F0ZQ==",
 "ZXhhbXBsZSBBU04xIENBIGNlcnRpZmljYXRl"]
 },
 "signature":"c2FtcGxlIHNpZ25hdHVyZQ"
 }
}

A.1.1.2. Sample GetDeviceStateResponse

 The TAM sends "GetDeviceStateRequest" to the OTrP Broker

Pei, et al. Expires November 16, 2019 [Page 85]

Internet-Draft OTrP May 2019

 The OTrP Broker obtains "dsi" from each TEE. (In this example there
 is a single TEE.)

 The TEE obtains signed "fwdata" from firmware.

 The TEE builds "dsi" - summarizing device state of the TEE.

Pei, et al. Expires November 16, 2019 [Page 86]

Internet-Draft OTrP May 2019

 {
 "dsi": {
 "tfwdata": {
 "tbs": "ezRGNDU0QTdGLTAwMkQtNDE1Ny04ODRFLUIwREQxQTA2QThBRX0=",
 "cert": "ZXhhbXBsZSBGVyBjZXJ0aWZpY2F0ZQ==",
 "sigalg": "RS256",
 "sig": "c2FtcGxlIEZXIHNpZ25hdHVyZQ=="
 },
 "tee": {
 "name": "Primary TEE",
 "ver": "1.0",
 "cert": "c2FtcGxlIFRFRSBjZXJ0aWZpY2F0ZQ==",
 "cacert": [
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDE=",
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDI="
],
 "sdlist": {
 "cnt": "1",
 "sd": [
 {
 "name": "default.acmebank.com",
 "spid": "acmebank.com",
 "talist": [
 {
 "taid": "acmebank.secure.banking",
 "taname": "Acme secure banking app"
 },
 {
 "taid": "acmebank.loyalty.rewards",
 "taname": "Acme loyalty rewards app"
 }
]
 }
]
 },
 "teeaiklist": [
 {
 "spaik": "c2FtcGxlIEFTTjEgZW5jb2RlZCBQS0NTMSBwdWJsaWNrZXk=",
 "spaiktype": "RSA",
 "spid": "acmebank.com"
 }
]
 }
 }
 }

 The TEE encrypts "dsi", and embeds it into a
 "GetDeviceTEEStateTBSResponse" message.

Pei, et al. Expires November 16, 2019 [Page 87]

Internet-Draft OTrP May 2019

{
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "{8C6F9DBB-FC39-435c-BC89-4D3614DA2F0B}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "signerreq":"false",
 "edsi": {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0K",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key":
 "
 QUVTMTI4IChDRUspIGtleSwgZW5jcnlwdGVkIHdpdGggVFNNIFJTQSBwdWJsaWMg
 a2V5LCB1c2luZyBSU0ExXzUgcGFkZGluZw"
 }
],
 "iv": "ySGmfZ69YlcEilNr5_SGbA",
 "ciphertext":
 "
 c2FtcGxlIGRzaSBkYXRhIGVuY3J5cHRlZCB3aXRoIEFFUzEyOCBrZXkgZnJvbSByZW
 NpcGllbnRzLmVuY3J5cHRlZF9rZXk",
 "tag": "c2FtcGxlIGF1dGhlbnRpY2F0aW9uIHRhZw"
 }
 }
}

 The TEE signs "GetDeviceTEEStateTBSResponse" and returns it to the
 OTrP Broker. The OTrP Broker encodes "GetDeviceTEEStateResponse"
 into an array to form "GetDeviceStateResponse".

Pei, et al. Expires November 16, 2019 [Page 88]

Internet-Draft OTrP May 2019

{
 "GetDeviceStateResponse": [
 {
 "GetDeviceTEEStateResponse": {
 "payload":
 "
 ewogICJHZXREZXZpY2VURUVTdGF0ZVRCU1Jlc3BvbnNlIjogewogICAgInZlciI6
 ICIxLjAiLAogICAgInN0YXR1cyI6ICJwYXNzIiwKICAgICJyaWQiOiAiezhDNkY5
 REJCLUZDMzktNDM1Yy1CQzg5LTREMzYxNERBMkYwQn0iLAogICAgInRpZCI6ICJ7
 NEY0NTRBN0YtMDAyRC00MTU3LTg4NEUtQjBERDFBMDZBOEFFfSIsCgkic2lnbmVy
 cmVxIjoiZmFsc2UiLAogICAgImVkc2kiOiB7CiAgICAgICJwcm90ZWN0ZWQiOiAi
 ZXlKbGJtTWlPaUpCTVRJNFEwSkRMVWhUTWpVMkluMEsiLAogICAgICAicmVjaXBp
 ZW50cyI6IFsKICAgICAgICB7CiAgICAgICAgICAiaGVhZGVyIjogewogICAgICAg
 ICAgImFsZyI6ICJSU0ExXzUiCiAgICAgICAgfSwKICAgICAgICAiZW5jcnlwdGVk
 X2tleSI6CiAgICAgICAgIgogICAgICAgIFFVVlRNVEk0SUNoRFJVc3BJR3RsZVN3
 Z1pXNWpjbmx3ZEdWa0lIZHBkR2dnVkZOTklGSlRRU0J3ZFdKc2FXTWcKICAgICAg
 ICBhMlY1TENCMWMybHVaeUJTVTBFeFh6VWdjR0ZrWkdsdVp3IgogICAgICAgIH0K
 ICAgICAgXSwKICAgICAgIml2IjogInlTR21mWjY5WWxjRWlsTnI1X1NHYkEiLAog
 ICAgICAiY2lwaGVydGV4dCI6CiAgICAgICIKICAgICAgYzJGdGNHeGxJR1J6YVNC
 a1lYUmhJR1Z1WTNKNWNIUmxaQ0IzYVhSb0lFRkZVekV5T0NCclpYa2dabkp2YlNC
 eVpXCiAgICAgIE5wY0dsbGJuUnpMbVZ1WTNKNWNIUmxaRjlyWlhrIiwKICAgICAg
 InRhZyI6ICJjMkZ0Y0d4bElHRjFkR2hsYm5ScFkyRjBhVzl1SUhSaFp3IgogICAg
 fQogIH0KfQ",
 "protected": "eyJhbGciOiJSUzI1NiJ9",
 "signature": "c2FtcGxlIHNpZ25hdHVyZQ"
 }
 }
]
}

 The TEE returns "GetDeviceStateResponse" back to the OTrP Broker,
 which returns message back to the TAM.

A.1.2. Sample CreateSD

A.1.2.1. Sample CreateSDRequest

Pei, et al. Expires November 16, 2019 [Page 89]

Internet-Draft OTrP May 2019

{
 "CreateSDTBSRequest": {
 "ver":"1.0",
 "rid":"req-01",
 "tid":"tran-01",
 "tee":"SecuriTEE",
 "nextdsi":"false",
 "dsihash":"Iu-c0-fGrpMmzbbtiWI1U8u7wMJE7IK8wkJpsVuf2js",
 "content":{
 "spid":"bank.com",
 "sdname":"sd.bank.com",
 "spcert":"MIIDFjCCAn-
 gAwIBAgIJAIk0Tat0tquDMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNVBAYTAkTAMQ4wD
 AYDVQQIDAVTZW91bDESMBAGA1UEBwwJR3Vyby1kb25nMRAwDgYDVQQKDAdTb2xhY2l
 hMRAwDgYDVQQLDAdTb2xhY2lhMRUwEwYDVQQDDAxTb2xhLWNpYS5jb20wHhcNMTUwN
 zAyMDg1MTU3WhcNMjAwNjMwMDg1MTU3WjBsMQswCQYDVQQGEwJLUjEOMAwGA1UECAw
 FU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU29sYWNpYTEQMA4GA
 1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tMIGfMA0GCSqGSIb3DQE
 BAQUAA4GNADCBiQKBgQDYWLrFf2OFMEciwSYsyhaLY4kslaWcXA0hCWJRaFzt5mU-
 lpSJ4jeu92inBbsXcI8PfRbaItsgW1TD1Wg4gQH4MX_YtaBoOepE--
 3JoZZyPyCWS3AaLYWrDmqFXdbzaO1i8GxB7zz0gWw55bZ9jyzcl5gQzWSqMRpx_dca
 d2SP2wIDAQABo4G_MIG8MIGGBgNVHSMEfzB9oXCkbjBsMQswCQYDVQQGEwJLUjEOMA
 wGA1UECAwFU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU29sYWNp
 YTEQMA4GA1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tggkAiTRNq3
 S2q4MwCQYDVR0TBAIwADAOBgNVHQ8BAf8EBAMCBsAwFgYDVR0lAQH_BAwwCgYIKwYB
 BQUHAwMwDQYJKoZIhvcNAQEFBQADgYEAEFMhRwEQ-
 LDa9O7P1N0mcLORpo6fW3QuJfuXbRQRQGoXddXMKazI4VjbGaXhey7Bzvk6TZYDa-
 GRiZby1J47UPaDQR3UiDzVvXwCOU6S5yUhNJsW_BeMViYj4lssX28iPpNwLUCVm1QV
 THILI6afLCRWXXclc1L5KGY290OwIdQ",
 "tamid":"TAM_x.acme.com",
 "did":"zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM"
 }
 }
}

 Below is a sample message after the content is encrypted and encoded

{
 "CreateSDRequest": {
 "payload":"
 eyJDcmVhdGVTRFRCU1JlcXVlc3QiOnsidmVyIjoiMS4wIiwicmlkIjoicmVxLTAxIiwidG
 lkIjoidHJhbi0wMSIsInRlZSI6IlNlY3VyaVRFRSIsIm5leHRkc2kiOiJmYWxzZSIsImRz
 aWhhc2giOiIyMmVmOWNkM2U3YzZhZTkzMjZjZGI2ZWQ4OTYyMzU1M2NiYmJjMGMyNDRlYz
 gyYmNjMjQyNjliMTViOWZkYTNiIiwiY29udGVudCI6eyJwcm90ZWN0ZWQiOiJlLUtBbkdW
 dVktS0FuVHJpZ0p4Qk1USTRRMEpETFVoVE1qVTI0b0NkZlEiLCJyZWNpcGllbnRzIjpbey
 JoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0sImVuY3J5cHRlZF9rZXkiOiJTUzE2NTl4Q2FJ
 c1dUeUlsVTZPLUVsZzU4UUhvT1pCekxVRGptVG9vanBaWE54TVpBakRMcWtaSTdEUzhOVG
 FIWHcxczFvZjgydVhsM0d6NlVWMkRoZDJ3R2l6Y2VEdGtXc1RwZDg4QVYwaWpEYTNXa3lk

Pei, et al. Expires November 16, 2019 [Page 90]

Internet-Draft OTrP May 2019

 dEpSVmlPOGdkSlEtV29NSUVJRUxzVGthblZCb25wQkF4ZHE0ckVMbl9TZlliaFg4Zm9ub2
 gxUVUifV0sIml2IjoiQXhZOERDdERhR2xzYkdsamIzUm9aUSIsImNpcGhlcnRleHQiOiI1
 bmVWZXdndm55UXprR3hZeWw5QlFrZTJVNjVaOHp4NDdlb3NzM3FETy0xY2FfNEpFY3NLcj
 ZhNjF5QzBUb0doYnJOQWJXbVRSemMwSXB5bTF0ZjdGemp4UlhBaTZBYnVSM2gzSUpRS1Bj
 UUVvRUlkZ2tWX0NaZTM2eTBkVDBpRFBMclg0QzFkb0dmMEdvaWViRC1yVUg1VUtEY3BsTW
 9lTjZvUnFyd0dnNUhxLTJXM3B4MUlzY0h4SktRZm11dkYxMTJ4ajBmZFNZX0N2WFE1NTJr
 TVRDUW1ZbzRPaGF2R0ZvaG9TZVVnaGZSVG1LYWp3OThkTzdhREdrUEpRUlBtYVVHWllEMW
 JXd01nMXFRV3RPd19EZlIyZDNzTzVUN0pQMDJDUFprVXBiQ3dZYVcybW9HN1c2Zlc2U3V5
 Q2lpd2pQWmZSQmIzSktTVTFTd1kxYXZvdW02OWctaDB6by12TGZvbHRrWFV2LVdPTXZTY0
 JzR25NRzZYZnMzbXlTWnJ1WTNRR09wVVRzdjFCQ0JqSTJpdjkwb2U2aXFCcVpxQVBxbzdi
 ajYwVlJGQzZPTlNLZExGQTIyU3pqRHo1dmtnTXNEaHkwSzlDeVhYN1Z6MkNLTXJvQjNiUE
 xFZF9abTZuVWlkTFN5cVJ5cXJxTmVnN1lmQng3aV93X0dzRW9rX1VYZXd6RGtneHp6RjZj
 XzZ6S0s3UFktVnVmYUo0Z2dHZmlpOHEwMm9RZ1VEZTB2Vm1FWDc0c2VQX2RxakVpZVVOYm
 xBZE9sS2dBWlFGdEs4dy1xVUMzSzVGTjRoUG9yeDc2b3lPVUpOQTVFZVV2Qy1jR2tMcTNQ
 UG1GRmQyaUtOTElCTEJzVWl6c1h3RERvZVA5SmktWGt5ZEQtREN1SHdpcno0OEdNNWVLSj
 Q5WVdqRUtFQko2T01NNUNmZHZ4cDNmVG1uUTdfTXcwZ3FZVDRiOUJJSnBfWjA3TTctNUpE
 emg0czhyU3dsQzFXU3V2RmhRWlJCcXJtX2RaUlRIb0VaZldXc1VCSWVNWWdxNG1zb0JqTj
 NXSzhnRWYwZGI5a3Z6UG9LYmpJRy10UUE2R2l1X3pHaFVfLXFBV1lLemVKMDZ6djRIWlBO
 dHktQXRyTGF0WGhtUTdOQlVrX0hvbjdOUWxhU1g1ZHVNVmN4bGs1ZHVrWFZNMDgxa09wYV
 kzbDliQVFfYVhTM0FNaFFTTVVsT3dnTDZJazFPYVpaTGFMLUE3ejlITnlESmFEWTVhakZK
 TWFDV1lfOG94YlNoQUktNXA2MmNuT0xzV0dNWWNKTlBGVTZpcWlMR19oc3JfNlNKMURhbD
 VtQ0YycnBJLUItMlhuckxZR01ZS0NEZ2V2dGFnbi1DVUV6RURwR3ozQ2VLcWdQU0Vqd3BK
 N0M3NXduYTlCSmtTUkpOdDNla3hoWElrcnNEazRHVVpMSDdQYzFYZHdRTXhxdWpzNmxJSV
 EycjM1NWEtVkotWHdPcFpfY3RPdW96LTA4WHdYQ3RkTEliSFFVTG40RjlMRTRtanU0dUxS
 bjNSc043WWZ1S3dCVmVEZDJ6R3NBY0s5SVlDa3hOaDk3dDluYW1iMDZqSXVoWXF5QkhWRU
 9nTkhici1rMDY1bW9OVk5lVVUyMm5OdVNKS0ZxVnIxT0dKNGVfNXkzYkNwTmxTeEFPV1Bn
 RnJzU0Flc2JJOWw4eVJtVTAwenJYdGc4OWt5SjlCcXN2eXA1RE8wX2FtS1JyMXB1MVJVWF
 lFZzB2ampKS1FSdDVZbXRUNFJzaWpqdGRDWDg3UUxJaUdSY0hDdlJzUzZSdDJESmNYR1ht
 UGQyc0ZmNUZyNnJnMkFzX3BmUHN3cnF1WlAxbVFLc3RPMFVkTXpqMTlyb2N1NHVxVXlHUD
 lWWU54cHVnWVdNSjRYb1dRelJtWGNTUEJ4VEtnenFPS2s3UnRzWWVMNXl4LVM4NjV0cHVz
 dTA0bXpzYUJRZ21od1ZFVXBRdWNrcG1YWkNLNHlJUXktaHNFQUlJSmVxdFB3dVAySXF0X2
 I5dlk0bzExeXdzeXhzdmp2RnNKN0VVZU1MaGE2R2dSanBSbnU5RWIzRnlJZ0U5M0VVNEEw
 T0lUMWlOSGNRYWc0eWtOc3dPdkxQbjZIZ21zQ05ESlgwekc2RlFDMTZRdjBSQ25SVTdfV2
 VvblhSTUZwUzZRZ1JiSk45R1NMckN5bklJSWxUcDBxNHBaS05zM0tqQ2tMUzJrb3Bhd2Y0
 WF9BUllmTko3a0s5eW5BR0dCcktnUWJNRWVxUEFmMDBKMlYtVXpuU1JMZmQ4SGs3Y2JEdk
 5RQlhHQW9BR0ViaGRwVUc0RXFwMlVyQko3dEtyUUVSRlh4RTVsOFNHY2czQ1RmN2Zoazdx
 VEFBVjVsWEFnOUtOUDF1c1ZRZk1fUlBleHFNTG9WQVVKV2syQkF6WF9uSEhkVVhaSVBIOG
 hLeDctdEFRV0dTWUd0R2FmanZJZzI2c082TzloQWZVd3BpSV90MzF6SkZORDU0OTZURHBz
 QmNnd2dMLU1UcVhCRUJ2NEhvQld5SG1DVjVFMUwiLCJ0YWciOiJkbXlEeWZJVlNJUi1Ren
 ExOEgybFRIeEMxbl9HZEtrdnZNMDJUcHdsYzQwIn19fQ",
 "protected":"e-KAnGFsZ-KAnTrigJxSUzI1NuKAnX0", //RSAwithSHA256
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p

Pei, et al. Expires November 16, 2019 [Page 91]

Internet-Draft OTrP May 2019

 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"nuQUsCTEBLeaRzuwd7q1iPIYEJ2eJfurO5sT5Y-
 N03zFRcv1jvrqMHtx_pw0Y9YWjmpoWfpfelhwGEko9SgeeBnznmkZbp7kjS6MmX4CKz
 9OApe3-VI7yL9Yp0WNdRh3425eYfuapCy3lcXFln5JBAUnU_OzUg3RWxcU_yGnFsw"
 }
}

A.1.2.2. Sample CreateSDResponse

{
 "CreateSDTBSResponse": {
 "ver":"1.0",
 "status":"pass",
 "rid":"req-01",
 "tid":"tran-01",
 "content":{
 "did":"zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM",
 "sdname":"sd.bank.com",
 "teespaik":"AQABjY9KiwH3hkMmSAAN6CLXot525U85WNlWKAQz5TOdfe_CM8h-
 X6_EHX1gOXoyRXaBiKMqWb0YZLCABTw1ytdXy2kWa525imRho8Vqn6HDGsJDZPDru9
 GnZR8pZX5ge_dWXB_uljMvDttc5iAWEJ8ZgcpLGtBTGLZnQoQbjtn1lIE",
 }
 }
}

 Below is the response message after the content is encrypted and
 encoded.

{
 "CreateSDResponse": {
 "payload":"
 eyJDcmVhdGVTRFRCU1Jlc3BvbnNlIjp7InZlciI6IjEuMCIsInN0YXR1cyI6InBhc3Mi
 LCJyaWQiOiJyZXEtMDEiLCJ0aWQiOiJ0cmFuLTAxIiwiY29udGVudCI6eyJwcm90ZWN0
 ZWQiOiJlLUtBbkdWdVktS0FuVHJpZ0p4Qk1USTRRMEpETFVoVE1qVTI0b0NkZlEiLCJy
 ZWNpcGllbnRzIjpbeyJoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0sImVuY3J5cHRlZF9r

Pei, et al. Expires November 16, 2019 [Page 92]

Internet-Draft OTrP May 2019

 ZXkiOiJOX0I4R3pldUlfN2hwd0wwTFpHSTkxVWVBbmxJRkJfcndmZU1yZERrWnFGak1s
 VVhjdlI0XzhhOGhyeFI4SXR3aEtFZnVfRWVLRDBQb0dqQ2pCSHcxdG1ULUN6eWhsbW5v
 Slk3LXllWnZzRkRpc2VNTkd0eGE0OGZJYUs2VWx5NUZMYXBCZVc5T1I5bmktOU9GQV9j
 aFVuWWl3b2Q4ZTJFa0Vpd0JEZ1EzMk0ifV0sIml2IjoiQXhZOERDdERhR2xzYkdsamIz
 Um9aUSIsImNpcGhlcnRleHQiOiJsalh6Wk5JTmR1WjFaMXJHVElkTjBiVUp1RDRVV2xT
 QVptLWd6YnJINFVDYy1jMEFQenMtMWdWSFk4NTRUR3VMYkdyRmVHcDFqM2Fsb1lacWZp
 ZnE4aEt3Ty16RFlBN2tmVFhBZHp6czM4em9xeG4zbHoyM2w1RUlGUWhrOHBRWTRYTHRW
 M3ZBQWlNYnlrQ1Q3VS1CWDdWcjBacVNhYWZTQVZ4OFBLQ1RIU3hHN3hHVko0NkxxRzJS
 RE54WXQ4RC1SQ3lZUi1zRTM0MUFKZldEc2FLaGRRbzJXcjNVN1hTOWFqaXJtWjdqTlJ4
 cVRodHJBRWlIY1ctOEJMdVFHWEZ1YUhLMTZrenJKUGl4d0VXbzJ4cmw4cmkwc3ZRcHpl
 Z2M3MEt2Z0I0NUVaNHZiNXR0YlUya25hN185QU1Wcm4wLUJaQ1Bnb280MWlFblhuNVJn
 TXY2c2V2Y1JPQ2xHMnpWSjFoRkVLYjk2akEiLCJ0YWciOiIzOTZISTk4Uk1NQnR0eDlo
 ZUtsODROaVZLd0lJSzI0UEt2Z1RGYzFrbEJzIn19fQ",
 "protected": "e-KAnGFsZ-KAnTrigJxSUzI1NuKAnX0",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcN
 MTUwNzAyMDkwMTE4WhcNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzET
 MBEGA1UECAwKQ2FsaWZvcm5pYTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8G
 A1UECgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEB
 AQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA
 6b_ZI3c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX
 9nxZBNQWDjAJBgNVHRMEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8E
 DDAKBggrBgEFBQcDAzANBgkqhkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4iv
 em4cIckfxzTBBiPHCjrrjB2X8Ktn8GSZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fV
 rJvnYAUBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"jnJtaB0vFFwrE-qKOR3Pu9pf2gNoI1s67GgPCTq0U-
 qrz97svKpuh32WgCP2MWCoQPEswsEX-nxhIx_siTe4zIPO1nBYn-
 R7b25rQaF87O8uAOOnBN5Yl2Jk3laIbs-
 hGE32aRZDhrVoyEdSvIFrT6AQqD20bIAZGqTR-zA-900"
 }
}

A.1.3. Sample UpdateSD

Pei, et al. Expires November 16, 2019 [Page 93]

Internet-Draft OTrP May 2019

A.1.3.1. Sample UpdateSDRequest

{
 "UpdateSDTBSRequest": {
 "ver": "1.0",
 "rid": "1222DA7D-8993-41A4-AC02-8A2807B31A3A",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "tee": "Primary TEE ABC",
 "nextdsi": "false",
 "dsihash":
 "
 IsOvwpzDk8Onw4bCrsKTJsONwrbDrcKJYjVTw4vCu8OAw4JEw6zCgsK8w4JCacKxW8Kf
 w5o7",
 "content": { // NEEDS to BE ENCRYPTED
 "tamid": "id1.TAMxyz.com",
 "spid": "com.acmebank.spid1",
 "sdname": "com.acmebank.sdname1",
 "changes": {
 "newsdname": "com.acmebank.sdname2",
 "newspid": "com.acquirer.spid1",
 "spcert":
 "MIIDFjCCAn-
 gAwIBAgIJAIk0Tat0tquDMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNVBAYTAkTAMQ4
 wDAYDVQQIDAVTZW91bDESMBAGA1UEBwwJR3Vyby1kb25nMRAwDgYDVQQKDAdTb2x
 hY2lhMRAwDgYDVQQLDAdTb2xhY2lhMRUwEwYDVQQDDAxTb2xhLWNpYS5jb20wHhc
 NMTUwNzAyMDg1MTU3WhcNMjAwNjMwMDg1MTU3WjBsMQswCQYDVQQGEwJLUjEOMAw
 GA1UECAwFU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU29sYWN
 pYTEQMA4GA1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tMIGfMA0
 GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDYWLrFf2OFMEciwSYsyhaLY4kslaWcXA0
 hCWJRaFzt5mU-
 lpSJ4jeu92inBbsXcI8PfRbaItsgW1TD1Wg4gQH4MX_YtaBoOepE--
 3JoZZyPyCWS3AaLYWrDmqFXdbzaO1i8GxB7zz0gWw55bZ9jyzcl5gQzWSqMRpx_d
 cad2SP2wIDAQABo4G_MIG8MIGGBgNVHSMEfzB9oXCkbjBsMQswCQYDVQQGEwJLUj
 EOMAwGA1UECAwFU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU2
 9sYWNpYTEQMA4GA1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tgg
 kAiTRNq3S2q4MwCQYDVR0TBAIwADAOBgNVHQ8BAf8EBAMCBsAwFgYDVR0lAQH_BA
 wwCgYIKwYBBQUHAwMwDQYJKoZIhvcNAQEFBQADgYEAEFMhRwEQ-
 LDa9O7P1N0mcLORpo6fW3QuJfuXbRQRQGoXddXMKazI4VjbGaXhey7Bzvk6TZYDa
 -
 GRiZby1J47UPaDQR3UiDzVvXwCOU6S5yUhNJsW_BeMViYj4lssX28iPpNwLUCVm1
 QVTHILI6afLCRWXXclc1L5KGY290OwIdQ",
 "renewteespaik": "0"
 }
 }
 }
}

Pei, et al. Expires November 16, 2019 [Page 94]

Internet-Draft OTrP May 2019

A.1.3.2. Sample UpdateSDResponse

{
 "UpdateSDTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "1222DA7D-8993-41A4-AC02-8A2807B31A3A",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "content": {
 "did": "MTZENTE5Qzc0Qzk0NkUxMzYxNzk0NjY4NTc3OTY4NTI=",
 "teespaik":
 "AQABjY9KiwH3hkMmSAAN6CLXot525U85WNlWKAQz5TOdfe_CM8h-
 X6_EHX1gOXoyRXaBiKMqWb0YZLCABTw1ytdXy2kWa525imRho8Vqn6HDGsJDZPDru9
 GnZR8pZX5ge_dWXB_uljMvDttc5iAWEJ8ZgcpLGtBTGLZnQoQbjtn1lIE",
 "teespaiktype": "RSA"
 }
 }
}

A.1.4. Sample DeleteSD

A.1.4.1. Sample DeleteSDRequest

 The TAM builds message - including data to be encrypted.

 {
 "DeleteSDTBSRequest": {
 "ver": "1.0",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "tee": "Primary TEE",
 "nextdsi": "false",
 "dsihash": "AAECAwQFBgcICQoLDA0ODwABAgMEBQYHCAkKCwwNDg8=",
 "content": ENCRYPTED {
 "tamid": "TAM1.com",
 "sdname": "default.acmebank.com",
 "deleteta": "1"
 }
 }
 }

 The TAM encrypts the "content".

Pei, et al. Expires November 16, 2019 [Page 95]

Internet-Draft OTrP May 2019

{
 "DeleteSDTBSRequest": {
 "ver": "1.0",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "tee": "Primary TEE",
 "nextdsi": "false",
 "dsihash": "AAECAwQFBgcICQoLDA0ODwABAgMEBQYHCAkKCwwNDg8=",
 "content": {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key":
 "
 QUVTMTI4IChDRUspIGtleSwgZW5jcnlwdGVkIHdpdGggVFNNIFJTQSBwdWJsaWMga2
 V5LCB1c2luZyBSU0ExXzUgcGFkZGluZw"
 }
],
 "iv": "rWO5DVmQX9ogelMLBIogIA",
 "ciphertext":
 "
 c2FtcGxlIGRzaSBkYXRhIGVuY3J5cHRlZCB3aXRoIEFFUzEyOCBrZXkgZnJvbSByZWNp
 cGllbnRzLmVuY3J5cHRlZF9rZXk",
 "tag": "c2FtcGxlIGF1dGhlbnRpY2F0aW9uIHRhZw"
 }
 }
}

 The TAM signs the "DeleteSDTBSRequest" to form a "DeleteSDRequest"

Pei, et al. Expires November 16, 2019 [Page 96]

Internet-Draft OTrP May 2019

 {
 "DeleteSDRequest": {
 "payload":"
 ewoJIkRlbGV0ZVNEVEJTUmVxdWVzdCI6IHsKCQkidmVyIjogIjEuMCIsCgkJInJp
 ZCI6ICJ7NzEyNTUxRjUtREZCMy00M2YwLTlBNjMtNjYzNDQwQjkxRDQ5fSIsCgkJ
 InRpZCI6ICJ7NEY0NTRBN0YtMDAyRC00MTU3LTg4NEUtQjBERDFBMDZBOEFFfSIs
 CgkJInRlZSI6ICJQcmltYXJ5IFRFRSIsCgkJIm5leHRkc2kiOiAiZmFsc2UiLAoJ
 CSJkc2loYXNoIjogIkFBRUNBd1FGQmdjSUNRb0xEQTBPRHdBQkFnTUVCUVlIQ0Fr
 S0N3d05EZzg9IiwKCQkiY29udGVudCI6IHsKCQkJInByb3RlY3RlZCI6ICJleUps
 Ym1NaU9pSkJNVEk0UTBKRExVaFRNalUySW4wIiwKCQkJInJlY2lwaWVudHMiOiBb
 ewoJCQkJImhlYWRlciI6IHsKCQkJCQkiYWxnIjogIlJTQTFfNSIKCQkJCX0sCgkJ
 CQkiZW5jcnlwdGVkX2tleSI6ICJRVVZUTVRJNElDaERSVXNwSUd0bGVTd2daVzVq
 Y25sd2RHVmtJSGRwZEdnZ1ZGTk5JRkpUUVNCd2RXSnNhV01nYTJWNUxDQjFjMmx1
 WnlCU1UwRXhYelVnY0dGa1pHbHVadyIKCQkJfV0sCgkJCSJpdiI6ICJyV081RFZt
 UVg5b2dlbE1MQklvZ0lBIiwKCQkJImNpcGhlcnRleHQiOiAiYzJGdGNHeGxJR1J6
 YVNCa1lYUmhJR1Z1WTNKNWNIUmxaQ0IzYVhSb0lFRkZVekV5T0NCclpYa2dabkp2
 YlNCeVpXTnBjR2xsYm5SekxtVnVZM0o1Y0hSbFpGOXJaWGsiLAoJCQkidGFnIjog
 ImMyRnRjR3hsSUdGMWRHaGxiblJwWTJGMGFXOXVJSFJoWnciCgkJfQoJfQp9",
 "protected":"eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "x5c": ["ZXhhbXBsZSBBU04xIHNpZ25lciBjZXJ0aWZpY2F0ZQ==",
 "ZXhhbXBsZSBBU04xIENBIGNlcnRpZmljYXRl"]
 },
 "signature":"c2FtcGxlIHNpZ25hdHVyZQ"
 }
 }

A.1.4.2. Sample DeleteSDResponse

 The TEE creates a "DeleteSDTBSResponse" to respond to the
 "DeleteSDRequest" message from the TAM, including data to be
 encrypted.

 {
 "DeleteSDTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "content": ENCRYPTED {
 "did": "MTZENTE5Qzc0Qzk0NkUxMzYxNzk0NjY4NTc3OTY4NTI=",
 }
 }
 }

 The TEE encrypts the "content" for the TAM.

Pei, et al. Expires November 16, 2019 [Page 97]

Internet-Draft OTrP May 2019

 {
 "DeleteSDTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "content": {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0K",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key":
 "
 QUVTMTI4IChDRUspIGtleSwgZW5jcnlwdGVkIHdpdGggVFNNIFJTQSBwdWJsaWMg
 a2V5LCB1c2luZyBSU0ExXzUgcGFkZGluZw"
 }
],
 "iv": "ySGmfZ69YlcEilNr5_SGbA",
 "ciphertext":
 "
 c2FtcGxlIGRzaSBkYXRhIGVuY3J5cHRlZCB3aXRoIEFFUzEyOCBrZXkgZnJvbSByZW
 NpcGllbnRzLmVuY3J5cHRlZF9rZXk",
 "tag": "c2FtcGxlIGF1dGhlbnRpY2F0aW9uIHRhZw"
 }
 }
 }

 The TEE signs "DeleteSDTBSResponse" to form a "DeleteSDResponse"

Pei, et al. Expires November 16, 2019 [Page 98]

Internet-Draft OTrP May 2019

 {
 "DeleteSDResponse": {
 "payload":"
 ewoJIkRlbGV0ZVNEVEJTUmVzcG9uc2UiOiB7CgkJInZlciI6ICIxLjAiLAoJCSJz
 dGF0dXMiOiAicGFzcyIsCgkJInJpZCI6ICJ7NzEyNTUxRjUtREZCMy00M2YwLTlB
 NjMtNjYzNDQwQjkxRDQ5fSIsCgkJInRpZCI6ICJ7NEY0NTRBN0YtMDAyRC00MTU3
 LTg4NEUtQjBERDFBMDZBOEFFfSIsCgkJImNvbnRlbnQiOiB7CgkJCSJwcm90ZWN0
 ZWQiOiAiZXlKbGJtTWlPaUpCTVRJNFEwSkRMVWhUTWpVMkluMEsiLAoJCQkicmVj
 aXBpZW50cyI6IFt7CgkJCQkiaGVhZGVyIjogewoJCQkJCSJhbGciOiAiUlNBMV81
 IgoJCQkJfSwKCQkJCSJlbmNyeXB0ZWRfa2V5IjogIlFVVlRNVEk0SUNoRFJVc3BJ
 R3RsZVN3Z1pXNWpjbmx3ZEdWa0lIZHBkR2dnVkZOTklGSlRRU0J3ZFdKc2FXTWdh
 MlY1TENCMWMybHVaeUJTVTBFeFh6VWdjR0ZrWkdsdVp3IgoJCQl9XSwKCQkJIml2
 IjogInlTR21mWjY5WWxjRWlsTnI1X1NHYkEiLAoJCQkiY2lwaGVydGV4dCI6ICJj
 MkZ0Y0d4bElHUnphU0JrWVhSaElHVnVZM0o1Y0hSbFpDQjNhWFJvSUVGRlV6RXlP
 Q0JyWlhrZ1puSnZiU0J5WldOcGNHbGxiblJ6TG1WdVkzSjVjSFJsWkY5clpYayIs
 CgkJCSJ0YWciOiAiYzJGdGNHeGxJR0YxZEdobGJuUnBZMkYwYVc5dUlIUmhadyIK
 CQl9Cgl9Cn0",
 "protected":"eyJhbGciOiJSUzI1NiJ9",
 "signature":"c2FtcGxlIHNpZ25hdHVyZQ"
 }
 }

 The TEE returns "DeleteSDResponse" back to the OTrP Broker, which
 returns the message back to the TAM.

A.2. Sample TA Management Messages

A.2.1. Sample InstallTA

A.2.1.1. Sample InstallTARequest

Pei, et al. Expires November 16, 2019 [Page 99]

Internet-Draft OTrP May 2019

{
 "InstallTATBSRequest": {
 "ver": "1.0",
 "rid": "24BEB059-0AED-42A6-A381-817DFB7A1207",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "tee": "Primary TEE ABC",
 "nextdsi": "true",
 "dsihash":
 "
 IsOvwpzDk8Onw4bCrsKTJsONwrbDrcKJYjVTw4vCu8OAw4JEw6zCgsK8w4JCacKxW8Kf
 w5o7",
 "content": {
 "tamid": "id1.TAMxyz.com",
 "spid": "com.acmebank.spid1",
 "sdname": "com.acmebank.sdname1",
 "taid": "com.acmebank.taid.banking"
 },
 "encrypted_ta": {
 "key":
 "mLBjodcE4j36y64nC/nEs694P3XrLAOokjisXIGfs0H7lOEmT5FtaNDYEMcg9RnE
 ftlJGHO7N0lgcNcjoXBmeuY9VI8xzrsZM9gzH6VBKtVONSx0aw5IAFkNcyPZwDdZ
 MLwhvrzPJ9Fg+bZtrCoJz18PUz+5aNl/dj8+NM85LCXXcBlZF74btJer1Mw6ffzT
 /grPiEQTeJ1nEm9F3tyRsvcTInsnPJ3dEXv7sJXMrhRKAeZsqKzGX4eiZ3rEY+FQ
 6nXULC8cAj5XTKpQ/EkZ/iGgS0zcXR7KUJv3wFEmtBtPD/+ze08NILLmxM8olQFj
 //Lq0gGtq8vPC8r0oOfmbQ==",
 "iv": "4F5472504973426F726E496E32303135",
 "alg": "AESCBC",
 "ciphertadata":
 "......0x/5KGCXWfg1Vrjm7zPVZqtYZ2EovBow+7EmfOJ1tbk......=",
 "cipherpdata": "0x/5KGCXWfg1Vrjm7zPVZqtYZ2EovBow+7EmfOJ1tbk="
 }
 }
}

A.2.1.2. Sample InstallTAResponse

 A sample to-be-signed response of InstallTA looks as follows.

 {
 "InstallTATBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "24BEB059-0AED-42A6-A381-817DFB7A1207",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "content": {
 "did": "MTZENTE5Qzc0Qzk0NkUxMzYxNzk0NjY4NTc3OTY4NTI=",
 "dsi": {
 "tfwdata": {

Pei, et al. Expires November 16, 2019 [Page 100]

Internet-Draft OTrP May 2019

 "tbs": "ezRGNDU0QTdGLTAwMkQtNDE1Ny04ODRFLUIwREQxQTA2QThBRX0="
 "cert": "ZXhhbXBsZSBGVyBjZXJ0aWZpY2F0ZQ==",
 "sigalg": "UlMyNTY=",
 "sig": "c2FtcGxlIEZXIHNpZ25hdHVyZQ=="
 },
 "tee": {
 "name": "Primary TEE",
 "ver": "1.0",
 "cert": "c2FtcGxlIFRFRSBjZXJ0aWZpY2F0ZQ==",
 "cacert": [
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDE=",
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDI="
],
 "sdlist": {
 "cnt": "1",
 "sd": [
 {
 "name": "com.acmebank.sdname1",
 "spid": "com.acmebank.spid1",
 "talist": [
 {
 "taid": "com.acmebank.taid.banking",
 "taname": "Acme secure banking app"
 },
 {
 "taid": "acom.acmebank.taid.loyalty.rewards",
 "taname": "Acme loyalty rewards app"
 }
]
 }
]
 },
 "teeaiklist": [
 {
 "spaik":
 "c2FtcGxlIEFTTjEgZW5jb2RlZCBQS0NTMSBwdWJsaWNrZXk=",
 "spaiktype": "RSA"
 "spid": "acmebank.com"
 }
]
 }
 }
 }
 }
 }

Pei, et al. Expires November 16, 2019 [Page 101]

Internet-Draft OTrP May 2019

A.2.2. Sample UpdateTA

A.2.2.1. Sample UpdateTARequest

{
 "UpdateTATBSRequest": {
 "ver": "1.0",
 "rid": "req-2",
 "tid": "tran-01",
 "tee": "SecuriTEE",
 "nextdsi": " false",
 "dsihash": "gwjul_9MZks3pqUSN1-eL1aViwGXNAxk0AIKW79dn4U",
 "content": {
 "tamid": "TAM1.acme.com",
 "spid": "bank.com",
 "sdname": "sd.bank.com",
 "taid": "sd.bank.com.ta"
 },
 "encrypted_ta": {
 "key":
 "
 XzmAn_RDVk3IozMwNWhiB6fmZlIs1YUvMKlQAv_UDoZ1fvGGsRGo9bT0A440aYMgLt
 GilKypoJjCgijdaHgamaJgRSc4Je2otpnEEagsahvDNoarMCC5nGQdkRxW7Vo2NKgL
 A892HGeHkJVshYm1cUlFQ-BhiJ4NAykFwlqC_oc",
 "iv": "AxY8DCtDaGlsbGljb3RoZQ",
 "alg": "AESCBC",
 "ciphernewtadata":
 "KHqOxGn7ib1F_14PG4_UX9DBjOcWkiAZhVE-U-
 67NsKryHGokeWr2spRWfdU2KWaaNncHoYGwEtbCH7XyNbOFh28nzwUmstep4nHWbAl
 XZYTNkENcABPpuw_G3I3HADo"
 }
 }
}

{
 "UpdateTARequest": {
 "payload" :
 "
 eyJVcGRhdGVUQVRCU1JlcXVlc3QiOnsidmVyIjoiMS4wIiwicmlkIjoicmVxLTIiLCJ0
 aWQiOiJ0cmFuLTAxIiwidGVlIjoiU2VjdXJpVEVFIiwibmV4dGRzaSI6ImZhbHNlIiwi
 ZHNpaGFzaCI6Imd3anVsXzlNWmtzM3BxVVNOMS1lTDFhVml3R1hOQXhrMEFJS1c3OWRu
 NFUiLCJjb250ZW50Ijp7InByb3RlY3RlZCI6ImV5SmxibU1pT2lKQk1USTRRMEpETFVo
 VE1qVTJJbjAiLCJyZWNpcGllbnRzIjpbeyJoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0s
 ImVuY3J5cHRlZF9rZXkiOiJYem1Bbl9SRFZrM0lvek13TldoaUI2Zm1abElzMVlVdk1L
 bFFBdl9VRG9aMWZ2R0dzUkdvOWJUMEE0NDBhWU1nTHRHaWxLeXBvSmpDZ2lqZGFIZ2Ft
 YUpnUlNjNEplMm90cG5FRWFnc2FodkROb2FyTUNDNW5HUWRrUnhXN1ZvMk5LZ0xBODky
 SEdlSGtKVnNoWW0xY1VsRlEtQmhpSjROQXlrRndscUNfb2MifV0sIml2IjoiQXhZOERD
 dERhR2xzYkdsamIzUm9aUSIsImNpcGhlcnRleHQiOiJIYTcwVXRZVEtWQmtXRFJuMi0w

Pei, et al. Expires November 16, 2019 [Page 102]

Internet-Draft OTrP May 2019

 SF9IdkZtazl5SGtoVV91bk1OLWc1T3BqLWF1NGFUb2lxWklMYzVzYTdENnZZSjF6eW04
 QW1JOEJIVXFqc2l5Z0tOcC1HdURJUjFzRXc0a2NhMVQ5ZENuU0RydHhSUFhESVdrZmt3
 azZlR1NQWiIsInRhZyI6Im9UN01UTE41eWtBTFBoTDR0aUh6T1pPTGVFeU9xZ0NWaEM5
 MXpkcldMU0UifSwiZW5jcnlwdGVkX3RhIjp7ImtleSI6Ilh6bUFuX1JEVmszSW96TXdO
 V2hpQjZmbVpsSXMxWVV2TUtsUUF2X1VEb1oxZnZHR3NSR285YlQwQTQ0MGFZTWdMdEdp
 bEt5cG9KakNnaWpkYUhnYW1hSmdSU2M0SmUyb3RwbkVFYWdzYWh2RE5vYXJNQ0M1bkdR
 ZGtSeFc3Vm8yTktnTEE4OTJIR2VIa0pWc2hZbTFjVWxGUS1CaGlKNE5BeWtGd2xxQ19v
 YyIsIml2IjoiQXhZOERDdERhR2xzYkdsamIzUm9aUSIsImFsZyI6IkFFU0NCQyIsImNp
 cGhlcm5ld3RhZGF0YSI6IktIcU94R243aWIxRl8xNFBHNF9VWDlEQmpPY1draUFaaFZF
 LVUtNjdOc0tyeUhHb2tlV3Iyc3BSV2ZkVTJLV2FhTm5jSG9ZR3dFdGJDSDdYeU5iT0Zo
 MjhuendVbXN0ZXA0bkhXYkFsWFpZVE5rRU5jQUJQcHV3X0czSTNIQURvIn19fQ",
 "protected": " eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p
 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"inB1K6G3EAhF-
 FbID83UI25R5Ao8MI4qfrbrmf0UQhjM3O7_g3l6XxN_JkHrGQaZr-
 myOkGPVM8BzbUZW5GqxNZwFXwMeaoCjDKc4Apv4WZkD1qKJxkg1k5jaUCfJz1Jmw_XtX
 6MHhrLh9ov03S9PtuT1VAQ0FVUB3qFIvjSnNU"
 }
}

A.2.2.2. Sample UpdateTAResponse

Pei, et al. Expires November 16, 2019 [Page 103]

Internet-Draft OTrP May 2019

 {
 "UpdateTATBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "req-2",
 "tid": "tran-01",
 "content": {
 "did": "zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM"
 }
 }
 }

Pei, et al. Expires November 16, 2019 [Page 104]

Internet-Draft OTrP May 2019

{
 "UpdateTAResponse":{
 "payload":"
 eyJVcGRhdGVUQVRCU1Jlc3BvbnNlIjp7InZlciI6IjEuMCIsInN0YXR1cyI6InBhc3Mi
 LCJyaWQiOiJyZXEtMiIsInRpZCI6InRyYW4tMDEiLCJjb250ZW50Ijp7InByb3RlY3Rl
 ZCI6ImV5SmxibU1pT2lKQk1USTRRMEpETFVoVE1qVTJJbjAiLCJyZWNpcGllbnRzIjpb
 eyJoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0sImVuY3J5cHRlZF9rZXkiOiJFaGUxLUJB
 UUdJLTNEMFNHdXFGY01MZDJtd0gxQm1uRndYQWx1M1FxUFVXZ1RRVm55SUowNFc2MnBK
 YWVSREFkeTU0R0FSVjBrVzQ0RGw0MkdUUlhqbE1EZ3BYdXdFLWloc1JVV0tNNldCZ2N3
 VXVGQTRUR3gwU0I1NTZCdl92dnBNaFdfMXh2c2FHdFBaQmwxTnZjbXNibzBhY3FobXlu
 bzBDTmF5SVAtX1UifV0sIml2IjoiQXhZOERDdERhR2xzYkdsamIzUm9aUSIsImNpcGhl
 cnRleHQiOiJwc2o2dGtyaGJXM0lmVElMeE9GMU5HdFUtcTFmeVBidV9KWk9jbklycWIw
 eTNPOHN6OTItaWpWR1ZyRW5WbG1sY1FYeWFNZTNyX1JGdEkwV3B4UmRodyIsInRhZyI6
 Ik0zb2dNNk11MVJYMUMybEZvaG5rTkN5b25qNjd2TDNqd2RrZXhFdUlpaTgifX19",
 "protected":"eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p
 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"
 Twajmt_BBLIMcNrDsjqr8lI7O7lEQxXZNhlUOtFkOMMqf37wOPKtp_99LoS82CVmdpCo
 PLaws8zzh-SNIQ42-
 9GYO8_9BaEGCiCwyl8YgWP9fWNfNv2gR2fl2DK4uknkYu1EMBW4YfP81n_pGpb4Gm-
 nMk14grVZygwAPej3ZZk"
 }
}

Pei, et al. Expires November 16, 2019 [Page 105]

Internet-Draft OTrP May 2019

A.2.3. Sample DeleteTA

A.2.3.1. Sample DeleteTARequest

 {
 "DeleteTATBSRequest": {
 "ver": "1.0",
 "rid": "req-2",
 "tid": "tran-01",
 "tee": "SecuriTEE",
 "nextdsi": "false",
 "dsihash": "gwjul_9MZks3pqUSN1-eL1aViwGXNAxk0AIKW79dn4U",
 "content": {
 "tamid": "TAM1.acme.com",
 "sdname": "sd.bank.com",
 "taid": "sd.bank.com.ta"
 }
 }
 }

Pei, et al. Expires November 16, 2019 [Page 106]

Internet-Draft OTrP May 2019

{
 "DeleteTARequest": {
 "payload":
 "
 eyJEZWxldGVUQVRCU1JlcXVlc3QiOnsidmVyIjoiMS4wIiwicmlkIjoicmVxLTIiLCJ0
 aWQiOiJ0cmFuLTAxIiwidGVlIjoiU2VjdXJpVEVFIiwibmV4dGRzaSI6ImZhbHNlIiwi
 ZHNpaGFzaCI6Imd3anVsXzlNWmtzM3BxVVNOMS1lTDFhVml3R1hOQXhrMEFJS1c3OWRu
 NFUiLCJjb250ZW50Ijp7InByb3RlY3RlZCI6eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0s
 InJlY2lwaWVudHMiOlt7ImhlYWRlciI6eyJhbGciOiJSU0ExXzUifSwiZW5jcnlwdGVk
 X2tleSI6ImtyaGs0d2dpY0RlX3d0VXQyTW4tSUJsdUtvX0JkeXpNY2p1cVlBenBPYnRS
 TG9MZzQ0QkFLN2tRVWE1YTg0TEVJRGEzaHNtWDIxdldNZFJLczN4MTJsOUh5VFdfLUNS
 WmZtcUx2bEh1LV9MSVdvc1ZyRTZVMlJqUnRndllVOWliUkVLczkzRDRHWm4xVHFuZG9n
 d0tXRF9jdG1nWG1sbzZZVXpCWDZhR1dZMCJ9XSwiaXYiOiJBeFk4REN0RGFHbHNiR2xq
 YjNSb1pRIiwiY2lwaGVydGV4dCI6IkhhNzBVdFlUS1ZCa1dEUm4yLTBIX1BGa19yQnpQ
 dGJHdzhSNktlMXotdklNeFBSY0Nxa1puZmwyTjRjUTZPSTZCSHZJUUFoM2Jic0l0dHlR
 bXhDTE5Nbm8wejBrYm9TdkIyVXlxWExpeGVZIiwidGFnIjoidEtUbFRLdlR2LTRtVVlG
 Y1dYWnZMMVlhQnRGNloxVlNxOTMzVmI2UEpmcyJ9fX0",
 "protected" : "eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p
 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature" :
 "
 BZS0_Ab6pqvGNXe5lqT4Sc3jakyWQeiK9KlVSnimwWnjCCyMtyB9bwvlbILZba3IJiFe
 _3F9bIQpSytGS0f2TQrPTKC7pSjwDw-3kH7HkHcPPJd-
 PpMMfQvRx7AIV8vBqO9MijIC62iN0V2se5z2v8VFjGSoRGgq225w7FvrnWE"
 }
}

Pei, et al. Expires November 16, 2019 [Page 107]

Internet-Draft OTrP May 2019

A.2.3.2. Sample DeleteTAResponse

 {
 "DeleteTATBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "req-2",
 "tid": "tran-01",
 "content": {
 "did": "zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM"
 }
 }
 }

Pei, et al. Expires November 16, 2019 [Page 108]

Internet-Draft OTrP May 2019

{
 "DeleteTAResponse":{
 "payload":"
 ew0KCSJEZWxldGVUQVRCU1Jlc3BvbnNlIjogew0KCQkidmVyIjogIjEuMCIsDQoJCSJz
 dGF0dXMiOiAicGFzcyIsDQoJCSJyaWQiOiAicmVxLTIiLA0KCQkidGlkIjogInRyYW4t
 MDEiLA0KCQkiY29udGVudCI6IHsNCgkJCSJwcm90ZWN0ZWQiOnsiZW5jIjoiQTEyOENC
 Qy1IUzI1NiJ9LA0KCQkJInJlY2lwaWVudHMiOlsNCgkJCQl7DQoJCQkJCSJoZWFkZXIi
 OnsiYWxnIjoiUlNBMV81In0sDQoJCQkJCSJlbmNyeXB0ZWRfa2V5IjoiTXdtU1ZHaWU2
 eHpfQmxTaFlmTFRKRHhKT3oyNWhvYy1HZ2NEM2o5OWFyM2E4X2lYY182ZE44bFRTb1dD
 X19wZEFhaEMyWk5SakdIcTBCZ2JDYTRKalk0eXRkMVBVWDB6M1psbXl1YnRXM291eEpY
 el9PMzg1WGM4S3hySndjbElyZGx2WUY2OVZmeERLQkVzUHJCdzlVenVIa1VmSU4xWlFU
 bWZ0QmVaSlJnIg0KCQkJCX0NCgkJCV0sDQoJCQkiaXYiOiJBeFk4REN0RGFHbHNiR2xq
 YjNSb1pRIiwNCgkJCSJjaXBoZXJ0ZXh0IjoiamhQTlV5ZkFTel9rVV9GbEM2LUtCME01
 WDBHNE5MbHc0LWt0bERyajZTWlUteUp6eUFUbC1oY0ZBWWMwLXJMVEF4cF93N1d1WER0
 Y3N3SzJSSzRjcWciLA0KCQkJInRhZyI6IlBBeGo5N25oT29qVTNIREhxSll4MGZMNWpt
 b0xkTlJkTHRTAMIzUTdrYXciDQoJCX0NCgl9DQp9",
 "protected": "eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcN
 MTUwNzAyMDkwMTE4WhcNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzET
 MBEGA1UECAwKQ2FsaWZvcm5pYTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8G
 A1UECgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEB
 AQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA
 6b_ZI3c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX
 9nxZBNQWDjAJBgNVHRMEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8E
 DDAKBggrBgEFBQcDAzANBgkqhkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4iv
 em4cIckfxzTBBiPHCjrrjB2X8Ktn8GSZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fV
 rJvnYAUBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"
 DfoBOetNelKsnAe_m4Z9K5UbihgWNYZsp5jVybiI05sOagDzv6R4do9npaAlAvpNK8HJ
 CxD6D22J8GDUExlIhSR1aDuDCQm6QzmjdkFdxAz5TRYl6zpPCZqgSToN_g1TZxqxEv6V
 Ob5fies4g6MHvCH-Il_-KbHq5YpwGxEEFdg"
 }
}

Pei, et al. Expires November 16, 2019 [Page 109]

Internet-Draft OTrP May 2019

A.3. Example OTrP Broker Option

 The most popular TEE devices today are Android powered devices. In
 an Android device, an OTrP Broker can be a bound service with a
 service registration ID that a Client Application can use. This
 option allows a Client Application not to depend on any OTrP Broker
 SDK or provider.

 An OTrP Broker is responsible to detect and work with more than one
 TEE if a device has more than one. In this version, there is only
 one active TEE such that an OTrP Broker only needs to handle the
 active TEE.

Appendix B. Contributors

 - Brian Witten
 Symantec
 brian_witten@symantec.com

 - Tyler Kim
 Solacia
 tylerkim@iotrust.kr

Authors’ Addresses

 Mingliang Pei
 Symantec
 350 Ellis St
 Mountain View, CA 94043
 USA

 Email: mingliang_pei@symantec.com

 Andrew Atyeo
 Intercede
 St. Mary’s Road, Lutterworth
 Leicestershire, LE17 4PS
 Great Britain

 Email: andrew.atyeo@intercede.com

Pei, et al. Expires November 16, 2019 [Page 110]

Internet-Draft OTrP May 2019

 Nick Cook
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge, CB1 9NJ
 Great Britain

 Email: nicholas.cook@arm.com

 Minho Yoo
 IoTrust
 Suite 501, Gasanbusiness Center,165, Gasan digital1-ro
 Seoul 08503
 Korea

 Email: minho.yoo@iotrust.kr

 Hannes Tschofenig
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge, CB1 9NJ
 Great Britain

 Email: hannes.tschofenig@arm.com

Pei, et al. Expires November 16, 2019 [Page 111]

