
Network Working Group R. R. Stewart
Internet-Draft Netflix, Inc.
Obsoletes: 4460, 4960, 6096, 7053, 8540 (if M. Tüxen
 approved) Münster Univ. of Appl. Sciences
Intended status: Standards Track K. E. E. Nielsen
Expires: 9 August 2022 Kamstrup A/S
 5 February 2022

 Stream Control Transmission Protocol
 draft-ietf-tsvwg-rfc4960-bis-19

Abstract

 This document obsoletes RFC 4960, if approved. It describes the
 Stream Control Transmission Protocol (SCTP) and incorporates the
 specification of the chunk flags registry from RFC 6096 and the
 specification of the I bit of DATA chunks from RFC 7053. Therefore,
 RFC 6096 and RFC 7053 are also obsoleted by this document, if
 approved. In addition to that, the Errata documents RFC 4460 and RFC
 8540 are also obsoleted by this document, if approved.

 SCTP was originally designed to transport Public Switched Telephone
 Network (PSTN) signaling messages over IP networks. It is also
 suited to be used for other applications, for example WebRTC.

 SCTP is a reliable transport protocol operating on top of a
 connectionless packet network such as IP. It offers the following
 services to its users:

 * acknowledged error-free non-duplicated transfer of user data,

 * data fragmentation to conform to discovered path maximum
 transmission unit (PMTU) size,

 * sequenced delivery of user messages within multiple streams, with
 an option for order-of-arrival delivery of individual user
 messages,

 * optional bundling of multiple user messages into a single SCTP
 packet, and

 * network-level fault tolerance through supporting of multi-homing
 at either or both ends of an association.

 The design of SCTP includes appropriate congestion avoidance behavior
 and resistance to flooding and masquerade attacks.

Stewart, et al. Expires 9 August 2022 [Page 1]

Internet-Draft Stream Control Transmission Protocol February 2022

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 August 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Conventions . 6
 2. Introduction . 6

Stewart, et al. Expires 9 August 2022 [Page 2]

Internet-Draft Stream Control Transmission Protocol February 2022

 2.1. Motivation . 7
 2.2. Architectural View of SCTP 7
 2.3. Key Terms . 8
 2.4. Abbreviations . 12
 2.5. Functional View of SCTP 13
 2.5.1. Association Startup and Takedown 13
 2.5.2. Sequenced Delivery within Streams 14
 2.5.3. User Data Fragmentation 15
 2.5.4. Acknowledgement and Congestion Avoidance 15
 2.5.5. Chunk Bundling 15
 2.5.6. Packet Validation 16
 2.5.7. Path Management 16
 2.6. Serial Number Arithmetic 17
 2.7. Changes from RFC 4960 17
 3. SCTP Packet Format . 18
 3.1. SCTP Common Header Field Descriptions 19
 3.2. Chunk Field Descriptions 20
 3.2.1. Optional/Variable-Length Parameter Format 23
 3.2.2. Reporting of Unrecognized Parameters 25
 3.3. SCTP Chunk Definitions 25
 3.3.1. Payload Data (DATA) (0) 25
 3.3.2. Initiation (INIT) (1) 28
 3.3.2.1. Optional or Variable-Length Parameters in INIT
 chunks . 32
 3.3.3. Initiation Acknowledgement (INIT ACK) (2) 35
 3.3.3.1. Optional or Variable-Length Parameters in INIT ACK
 chunks . 39
 3.3.4. Selective Acknowledgement (SACK) (3) 40
 3.3.5. Heartbeat Request (HEARTBEAT) (4) 43
 3.3.6. Heartbeat Acknowledgement (HEARTBEAT ACK) (5) 44
 3.3.7. Abort Association (ABORT) (6) 45
 3.3.8. Shutdown Association (SHUTDOWN) (7) 46
 3.3.9. Shutdown Acknowledgement (SHUTDOWN ACK) (8) 47
 3.3.10. Operation Error (ERROR) (9) 47
 3.3.10.1. Invalid Stream Identifier (1) 49
 3.3.10.2. Missing Mandatory Parameter (2) 50
 3.3.10.3. Stale Cookie Error (3) 50
 3.3.10.4. Out of Resource (4) 51
 3.3.10.5. Unresolvable Address (5) 51
 3.3.10.6. Unrecognized Chunk Type (6) 52
 3.3.10.7. Invalid Mandatory Parameter (7) 52
 3.3.10.8. Unrecognized Parameters (8) 52
 3.3.10.9. No User Data (9) 53
 3.3.10.10. Cookie Received While Shutting Down (10) 53
 3.3.10.11. Restart of an Association with New Addresses
 (11) . 54
 3.3.10.12. User-Initiated Abort (12) 54
 3.3.10.13. Protocol Violation (13) 54

Stewart, et al. Expires 9 August 2022 [Page 3]

Internet-Draft Stream Control Transmission Protocol February 2022

 3.3.11. Cookie Echo (COOKIE ECHO) (10) 55
 3.3.12. Cookie Acknowledgement (COOKIE ACK) (11) 56
 3.3.13. Shutdown Complete (SHUTDOWN COMPLETE) (14) 56
 4. SCTP Association State Diagram 57
 5. Association Initialization 60
 5.1. Normal Establishment of an Association 60
 5.1.1. Handle Stream Parameters 62
 5.1.2. Handle Address Parameters 63
 5.1.3. Generating State Cookie 64
 5.1.4. State Cookie Processing 65
 5.1.5. State Cookie Authentication 65
 5.1.6. An Example of Normal Association Establishment . . . 66
 5.2. Handle Duplicate or Unexpected INIT, INIT ACK, COOKIE ECHO,
 and COOKIE ACK Chunks 68
 5.2.1. INIT Chunk Received in COOKIE-WAIT or COOKIE-ECHOED
 State (Item B) 68
 5.2.2. Unexpected INIT Chunk in States Other than CLOSED,
 COOKIE-ECHOED, COOKIE-WAIT, and SHUTDOWN-ACK-SENT . . 69
 5.2.3. Unexpected INIT ACK Chunk 70
 5.2.4. Handle a COOKIE ECHO Chunk when a TCB Exists 70
 5.2.4.1. An Example of a Association Restart 73
 5.2.5. Handle Duplicate COOKIE ACK Chunk 74
 5.2.6. Handle Stale Cookie Error 74
 5.3. Other Initialization Issues 74
 5.3.1. Selection of Tag Value 75
 5.4. Path Verification . 75
 6. User Data Transfer . 76
 6.1. Transmission of DATA Chunks 78
 6.2. Acknowledgement on Reception of DATA Chunks 81
 6.2.1. Processing a Received SACK Chunk 84
 6.3. Management of Retransmission Timer 86
 6.3.1. RTO Calculation 86
 6.3.2. Retransmission Timer Rules 88
 6.3.3. Handle T3-rtx Expiration 89
 6.4. Multi-Homed SCTP Endpoints 90
 6.4.1. Failover from an Inactive Destination Address 91
 6.5. Stream Identifier and Stream Sequence Number 92
 6.6. Ordered and Unordered Delivery 92
 6.7. Report Gaps in Received DATA TSNs 93
 6.8. CRC32c Checksum Calculation 94
 6.9. Fragmentation and Reassembly 95
 6.10. Bundling . 96
 7. Congestion Control . 97
 7.1. SCTP Differences from TCP Congestion Control 98
 7.2. SCTP Slow-Start and Congestion Avoidance 99
 7.2.1. Slow-Start . 100
 7.2.2. Congestion Avoidance 101
 7.2.3. Congestion Control 102

Stewart, et al. Expires 9 August 2022 [Page 4]

Internet-Draft Stream Control Transmission Protocol February 2022

 7.2.4. Fast Retransmit on Gap Reports 102
 7.2.5. Reinitialization 104
 7.2.5.1. Change of Differentiated Services Code Points . . 104
 7.2.5.2. Change of Routes 104
 7.3. PMTU Discovery . 104
 8. Fault Management . 105
 8.1. Endpoint Failure Detection 105
 8.2. Path Failure Detection 105
 8.3. Path Heartbeat . 106
 8.4. Handle "Out of the Blue" Packets 109
 8.5. Verification Tag . 110
 8.5.1. Exceptions in Verification Tag Rules 110
 9. Termination of Association 111
 9.1. Abort of an Association 112
 9.2. Shutdown of an Association 112
 10. ICMP Handling . 115
 11. Interface with Upper Layer 116
 11.1. ULP-to-SCTP . 117
 11.1.1. Initialize . 117
 11.1.2. Associate . 118
 11.1.3. Shutdown . 119
 11.1.4. Abort . 119
 11.1.5. Send . 119
 11.1.6. Set Primary . 121
 11.1.7. Receive . 121
 11.1.8. Status . 122
 11.1.9. Change Heartbeat 123
 11.1.10. Request Heartbeat 124
 11.1.11. Get SRTT Report 124
 11.1.12. Set Failure Threshold 125
 11.1.13. Set Protocol Parameters 125
 11.1.14. Receive Unsent Message 125
 11.1.15. Receive Unacknowledged Message 126
 11.1.16. Destroy SCTP Instance 127
 11.2. SCTP-to-ULP . 127
 11.2.1. DATA ARRIVE Notification 127
 11.2.2. SEND FAILURE Notification 128
 11.2.3. NETWORK STATUS CHANGE Notification 128
 11.2.4. COMMUNICATION UP Notification 128
 11.2.5. COMMUNICATION LOST Notification 129
 11.2.6. COMMUNICATION ERROR Notification 130
 11.2.7. RESTART Notification 130
 11.2.8. SHUTDOWN COMPLETE Notification 130
 12. Security Considerations 130
 12.1. Security Objectives 130
 12.2. SCTP Responses to Potential Threats 131
 12.2.1. Countering Insider Attacks 131
 12.2.2. Protecting against Data Corruption in the Network . 131

Stewart, et al. Expires 9 August 2022 [Page 5]

Internet-Draft Stream Control Transmission Protocol February 2022

 12.2.3. Protecting Confidentiality 131
 12.2.4. Protecting against Blind Denial-of-Service
 Attacks . 132
 12.2.4.1. Flooding . 132
 12.2.4.2. Blind Masquerade 133
 12.2.4.3. Improper Monopolization of Services 134
 12.3. SCTP Interactions with Firewalls 134
 12.4. Protection of Non-SCTP-Capable Hosts 134
 13. Network Management Considerations 135
 14. Recommended Transmission Control Block (TCB) Parameters . . . 135
 14.1. Parameters Necessary for the SCTP Instance 135
 14.2. Parameters Necessary per Association (i.e., the TCB) . . 136
 14.3. Per Transport Address Data 138
 14.4. General Parameters Needed 139
 15. IANA Considerations . 139
 15.1. IETF-Defined Chunk Extension 143
 15.2. IETF Chunk Flags Registration 144
 15.3. IETF-Defined Chunk Parameter Extension 144
 15.4. IETF-Defined Additional Error Causes 144
 15.5. Payload Protocol Identifiers 145
 15.6. Port Numbers Registry 145
 16. Suggested SCTP Protocol Parameter Values 145
 17. Acknowledgements . 146
 18. Normative References . 147
 19. Informative References 149
 Appendix A. CRC32c Checksum Calculation 152
 Authors’ Addresses . 159

1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Introduction

 This section explains the reasoning behind the development of the
 Stream Control Transmission Protocol (SCTP), the services it offers,
 and the basic concepts needed to understand the detailed description
 of the protocol.

 This document obsoletes [RFC4960], if approved. In addition to that,
 it incorporates the specification of the chunk flags registry from
 [RFC6096] and the specification of the I bit of DATA chunks from
 [RFC7053]. Therefore, [RFC6096] and [RFC7053] are also obsoleted by
 this document, if approved.

Stewart, et al. Expires 9 August 2022 [Page 6]

Internet-Draft Stream Control Transmission Protocol February 2022

2.1. Motivation

 TCP [RFC0793] has performed immense service as the primary means of
 reliable data transfer in IP networks. However, an increasing number
 of recent applications have found TCP too limiting, and have
 incorporated their own reliable data transfer protocol on top of UDP
 [RFC0768]. The limitations that users have wished to bypass include
 the following:

 * TCP provides both reliable data transfer and strict order-of-
 transmission delivery of data. Some applications need reliable
 transfer without sequence maintenance, while others would be
 satisfied with partial ordering of the data. In both of these
 cases, the head-of-line blocking offered by TCP causes unnecessary
 delay.

 * The stream-oriented nature of TCP is often an inconvenience.
 Applications add their own record marking to delineate their
 messages, and make explicit use of the push facility to ensure
 that a complete message is transferred in a reasonable time.

 * The limited scope of TCP sockets complicates the task of providing
 highly-available data transfer capability using multi-homed hosts.

 * TCP is relatively vulnerable to denial-of-service attacks, such as
 SYN attacks.

 Transport of PSTN signaling across the IP network is an application
 for which all of these limitations of TCP are relevant. While this
 application directly motivated the development of SCTP, other
 applications might find SCTP a good match to their requirements. One
 example of this is the use of datachannels in the WebRTC
 infrastructure.

2.2. Architectural View of SCTP

 SCTP is viewed as a layer between the SCTP user application ("SCTP
 user" for short) and a connectionless packet network service such as
 IP. The remainder of this document assumes SCTP runs on top of IP.
 The basic service offered by SCTP is the reliable transfer of user
 messages between peer SCTP users. It performs this service within
 the context of an association between two SCTP endpoints. Section 11
 of this document sketches the API that exists at the boundary between
 the SCTP and the SCTP upper layers.

 SCTP is connection-oriented in nature, but the SCTP association is a
 broader concept than the TCP connection. SCTP provides the means for
 each SCTP endpoint (Section 2.3) to provide the other endpoint

Stewart, et al. Expires 9 August 2022 [Page 7]

Internet-Draft Stream Control Transmission Protocol February 2022

 (during association startup) with a list of transport addresses
 (i.e., multiple IP addresses in combination with an SCTP port)
 through which that endpoint can be reached and from which it will
 originate SCTP packets. The association spans transfers over all of
 the possible source/destination combinations that can be generated
 from each endpoint’s lists.

 _____________ _____________
 | SCTP User | | SCTP User |
 | Application | | Application |
 |-------------| |-------------|
 | SCTP | | SCTP |
 | Transport | | Transport |
 | Service | | Service |
 |-------------| |-------------|
 | |One or more ---- One or more| |
 | IP Network |IP address \/ IP address| IP Network |
 | Service |appearances /\ appearances| Service |
 |_____________| ---- |_____________|

 SCTP Node A |<-------- Network transport ------->| SCTP Node B

 Figure 1: An SCTP Association

 In addition to encapsulating SCTP packets in IPv4 or IPv6, it is also
 possible to encapsulate SCTP packets in UDP as specified in [RFC6951]
 or encapsulate them in DTLS as specified in [RFC8261].

2.3. Key Terms

 Some of the language used to describe SCTP has been introduced in the
 previous sections. This section provides a consolidated list of the
 key terms and their definitions.

 Active Destination Transport Address: A transport address on a peer
 endpoint that a transmitting endpoint considers available for
 receiving user messages.

 Association Maximum DATA Chunk Size (AMDCS): The smallest Path
 Maximum DATA Chunk Size (PMDCS) of all destination addresses.

 Bundling Of Chunks: An optional multiplexing operation, whereby more
 than one chunk can be carried in the same SCTP packet.

 Bundling Of User Messages: An optional multiplexing operation,
 whereby more than one user message can be carried in the same SCTP
 packet. Each user message occupies its own DATA chunk.

Stewart, et al. Expires 9 August 2022 [Page 8]

Internet-Draft Stream Control Transmission Protocol February 2022

 Chunk: A unit of information within an SCTP packet, consisting of a
 chunk header and chunk-specific content.

 Congestion Window (cwnd): An SCTP variable that limits outstanding
 data, in number of bytes, that a sender can send to a particular
 destination transport address before receiving an acknowledgement.

 Control Chunk: A chunk not being used for transmitting user data,
 i.e. every chunk which is not a DATA chunk.

 Cumulative TSN Ack Point: The Transmission Sequence Number (TSN) of
 the last DATA chunk acknowledged via the Cumulative TSN Ack field
 of a SACK chunk.

 Flightsize: The number of bytes of outstanding data to a particular
 destination transport address at any given time.

 Idle Destination Address: An address that has not had user messages
 sent to it within some length of time, normally the ’HB.interval’
 or greater.

 Inactive Destination Transport Address: An address that is
 considered inactive due to errors and unavailable to transport
 user messages.

 Message (or User Message): Data submitted to SCTP by the Upper Layer
 Protocol (ULP).

 Network Byte Order: Most significant byte first, a.k.a., big endian.

 Ordered Message: A user message that is delivered in order with
 respect to all previous user messages sent within the stream on
 which the message was sent.

 Outstanding Data (or Data Outstanding or Data In Flight): The total
 size of the DATA chunks associated with outstanding TSNs. A
 retransmitted DATA chunk is counted once in outstanding data. A
 DATA chunk that is classified as lost but that has not yet been
 retransmitted is not in outstanding data.

 Outstanding TSN (at an SCTP Endpoint): A TSN (and the associated
 DATA chunk) that has been sent by the endpoint but for which it
 has not yet received an acknowledgement.

 Out Of The Blue (OOTB) Packet: A correctly formed packet, for which
 the receiver can not identify the association it belongs to. See
 Section 8.4.

Stewart, et al. Expires 9 August 2022 [Page 9]

Internet-Draft Stream Control Transmission Protocol February 2022

 Path: The route taken by the SCTP packets sent by one SCTP endpoint
 to a specific destination transport address of its peer SCTP
 endpoint. Sending to different destination transport addresses
 does not necessarily guarantee getting separate paths. Within
 this specification, a path is identified by the destination
 transport address, since the routing is assumed to be stable.
 This includes in particular the source address being selected when
 sending packets to the destination address.

 Path Maximum DATA Chunk Size (PMDCS): The maximum size (including
 the DATA chunk header) of a DATA chunk which fits into an SCTP
 packet not exceeding the PMTU of a particular destination address.

 Path Maximum Transmission Unit (PMTU): The maximum size (including
 the SCTP common header and all chunks including their paddings) of
 an SCTP packet which can be sent to a particular destination
 address without using IP level fragmentation.

 Primary Path: The primary path is the destination and source address
 that will be put into a packet outbound to the peer endpoint by
 default. The definition includes the source address since an
 implementation MAY wish to specify both destination and source
 address to better control the return path taken by reply chunks
 and on which interface the packet is transmitted when the data
 sender is multi-homed.

 Receiver Window (rwnd): An SCTP variable a data sender uses to store
 the most recently calculated receiver window of its peer, in
 number of bytes. This gives the sender an indication of the space
 available in the receiver’s inbound buffer.

 SCTP Association: A protocol relationship between SCTP endpoints,
 composed of the two SCTP endpoints and protocol state information
 including Verification Tags and the currently active set of
 Transmission Sequence Numbers (TSNs), etc. An association can be
 uniquely identified by the transport addresses used by the
 endpoints in the association. Two SCTP endpoints MUST NOT have
 more than one SCTP association between them at any given time.

 SCTP Endpoint: The logical sender/receiver of SCTP packets. On a

Stewart, et al. Expires 9 August 2022 [Page 10]

Internet-Draft Stream Control Transmission Protocol February 2022

 multi-homed host, an SCTP endpoint is represented to its peers as
 a combination of a set of eligible destination transport addresses
 to which SCTP packets can be sent and a set of eligible source
 transport addresses from which SCTP packets can be received. All
 transport addresses used by an SCTP endpoint MUST use the same
 port number, but can use multiple IP addresses. A transport
 address used by an SCTP endpoint MUST NOT be used by another SCTP
 endpoint. In other words, a transport address is unique to an
 SCTP endpoint.

 SCTP Packet (or Packet): The unit of data delivery across the
 interface between SCTP and the connectionless packet network
 (e.g., IP). An SCTP packet includes the common SCTP header,
 possible SCTP control chunks, and user data encapsulated within
 SCTP DATA chunks.

 SCTP User Application (or SCTP User): The logical higher-layer
 application entity which uses the services of SCTP, also called
 the Upper-Layer Protocol (ULP).

 Slow-Start Threshold (ssthresh): An SCTP variable. This is the
 threshold that the endpoint will use to determine whether to
 perform slow start or congestion avoidance on a particular
 destination transport address. Ssthresh is in number of bytes.

 State Cookie: A container of all information needed to establish an
 association.

 Stream: A unidirectional logical channel established from one to
 another associated SCTP endpoint, within which all user messages
 are delivered in sequence except for those submitted to the
 unordered delivery service.

 Note: The relationship between stream numbers in opposite
 directions is strictly a matter of how the applications use them.
 It is the responsibility of the SCTP user to create and manage
 these correlations if they are so desired.

 Stream Sequence Number: A 16-bit sequence number used internally by
 SCTP to ensure sequenced delivery of the user messages within a
 given stream. One Stream Sequence Number is attached to each
 ordered user message.

 Tie-Tags: Two 32-bit random numbers that together make a 64-bit
 nonce. These tags are used within a State Cookie and TCB so that
 a newly restarting association can be linked to the original
 association within the endpoint that did not restart and yet not
 reveal the true Verification Tags of an existing association.

Stewart, et al. Expires 9 August 2022 [Page 11]

Internet-Draft Stream Control Transmission Protocol February 2022

 Transmission Control Block (TCB): An internal data structure created
 by an SCTP endpoint for each of its existing SCTP associations to
 other SCTP endpoints. TCB contains all the status and operational
 information for the endpoint to maintain and manage the
 corresponding association.

 Transmission Sequence Number (TSN): A 32-bit sequence number used
 internally by SCTP. One TSN is attached to each chunk containing
 user data to permit the receiving SCTP endpoint to acknowledge its
 receipt and detect duplicate deliveries.

 Transport Address: A transport address is traditionally defined by a
 network-layer address, a transport-layer protocol, and a
 transport-layer port number. In the case of SCTP running over IP,
 a transport address is defined by the combination of an IP address
 and an SCTP port number (where SCTP is the transport protocol).

 Unordered Message: Unordered messages are "unordered" with respect
 to any other message; this includes both other unordered messages
 as well as other ordered messages. An unordered message might be
 delivered prior to or later than ordered messages sent on the same
 stream.

 User Message: The unit of data delivery across the interface between
 SCTP and its user.

 Verification Tag: A 32-bit unsigned integer that is randomly
 generated. The Verification Tag provides a key that allows a
 receiver to verify that the SCTP packet belongs to the current
 association and is not an old or stale packet from a previous
 association.

2.4. Abbreviations

 MAC Message Authentication Code [RFC2104]
 RTO Retransmission Timeout
 RTT Round-Trip Time
 RTTVAR Round-Trip Time Variation
 SCTP Stream Control Transmission Protocol
 SRTT Smoothed RTT
 TCB Transmission Control Block
 TLV Type-Length-Value coding format
 TSN Transmission Sequence Number
 ULP Upper-Layer Protocol

Stewart, et al. Expires 9 August 2022 [Page 12]

Internet-Draft Stream Control Transmission Protocol February 2022

2.5. Functional View of SCTP

 The SCTP transport service can be decomposed into a number of
 functions. These are depicted in Figure 2 and explained in the
 remainder of this section.

 SCTP User Application

 _____________ ____________________
 | | | Sequenced Delivery |
 | Association | | within Streams |
 | | |____________________|
 | Startup |
 | | ____________________________
 | and | | User Data Fragmentation |
 | | |____________________________|
 | Takedown |
 | | ____________________________
 | | | Acknowledgement |
 | | | and |
 | | | Congestion Avoidance |
 | | |____________________________|
 | |
 | | ____________________________
 | | | Chunk Bundling |
 | | |____________________________|
 | |
 | | ________________________________
 | | | Packet Validation |
 | | |________________________________|
 | |
 | | ________________________________
 | | | Path Management |
 |_____________| |________________________________|

 Figure 2: Functional View of the SCTP Transport Service

2.5.1. Association Startup and Takedown

 An association is initiated by a request from the SCTP user (see the
 description of the ASSOCIATE (or SEND) primitive in Section 11).

Stewart, et al. Expires 9 August 2022 [Page 13]

Internet-Draft Stream Control Transmission Protocol February 2022

 A cookie mechanism, similar to one described by Karn and Simpson in
 [RFC2522], is employed during the initialization to provide
 protection against synchronization attacks. The cookie mechanism
 uses a four-way handshake, the last two legs of which are allowed to
 carry user data for fast setup. The startup sequence is described in
 Section 5 of this document.

 SCTP provides for graceful close (i.e., shutdown) of an active
 association on request from the SCTP user. See the description of
 the SHUTDOWN primitive in Section 11. SCTP also allows ungraceful
 close (i.e., abort), either on request from the user (ABORT
 primitive) or as a result of an error condition detected within the
 SCTP layer. Section 9 describes both the graceful and the ungraceful
 close procedures.

 SCTP does not support a half-open state (like TCP) wherein one side
 continues sending data while the other end is closed. When either
 endpoint performs a shutdown, the association on each peer will stop
 accepting new data from its user and only deliver data in queue at
 the time of the graceful close (see Section 9).

2.5.2. Sequenced Delivery within Streams

 The term "stream" is used in SCTP to refer to a sequence of user
 messages that are to be delivered to the upper-layer protocol in
 order with respect to other messages within the same stream. This is
 in contrast to its usage in TCP, where it refers to a sequence of
 bytes (in this document, a byte is assumed to be 8 bits).

 The SCTP user can specify at association startup time the number of
 streams to be supported by the association. This number is
 negotiated with the remote end (see Section 5.1.1). User messages
 are associated with stream numbers (SEND, RECEIVE primitives,
 Section 11). Internally, SCTP assigns a Stream Sequence Number to
 each message passed to it by the SCTP user. On the receiving side,
 SCTP ensures that messages are delivered to the SCTP user in sequence
 within a given stream. However, while one stream might be blocked
 waiting for the next in-sequence user message, delivery from other
 streams might proceed.

 SCTP provides a mechanism for bypassing the sequenced delivery
 service. User messages sent using this mechanism are delivered to
 the SCTP user as soon as they are received.

Stewart, et al. Expires 9 August 2022 [Page 14]

Internet-Draft Stream Control Transmission Protocol February 2022

2.5.3. User Data Fragmentation

 When needed, SCTP fragments user messages to ensure that the size of
 the SCTP packet passed to the lower layer does not exceed the PMTU.
 Once a user message has been fragmented, this fragmentation cannot be
 changed anymore. On receipt, fragments are reassembled into complete
 messages before being passed to the SCTP user.

2.5.4. Acknowledgement and Congestion Avoidance

 SCTP assigns a Transmission Sequence Number (TSN) to each user data
 fragment or unfragmented message. The TSN is independent of any
 Stream Sequence Number assigned at the stream level. The receiving
 end acknowledges all TSNs received, even if there are gaps in the
 sequence. If a user data fragment or unfragmented message needs to
 be retransmitted, the TSN assigned to it is used. In this way,
 reliable delivery is kept functionally separate from sequenced stream
 delivery.

 The acknowledgement and congestion avoidance function is responsible
 for packet retransmission when timely acknowledgement has not been
 received. Packet retransmission is conditioned by congestion
 avoidance procedures similar to those used for TCP. See Section 6
 and Section 7 for a detailed description of the protocol procedures
 associated with this function.

2.5.5. Chunk Bundling

 As described in Section 3, the SCTP packet as delivered to the lower
 layer consists of a common header followed by one or more chunks.
 Each chunk contains either user data or SCTP control information. An
 SCTP implementation supporting bundling on the sender side might
 delay the sending of user messages to allow the corresponding DATA
 chunks to be bundled.

 The SCTP user has the option to request that an SCTP implementation
 does not delay the sending of a user message just for this purpose.
 However, even if the SCTP user has chosen this option, the SCTP
 implementation might delay the sending due to other reasons, for
 example due to congestion control or flow control, and might also
 bundle multiple DATA chunks, if possible.

Stewart, et al. Expires 9 August 2022 [Page 15]

Internet-Draft Stream Control Transmission Protocol February 2022

2.5.6. Packet Validation

 A mandatory Verification Tag field and a 32-bit checksum field (see
 Appendix A for a description of the CRC32c checksum) are included in
 the SCTP common header. The Verification Tag value is chosen by each
 end of the association during association startup. Packets received
 without the expected Verification Tag value are discarded, as a
 protection against blind masquerade attacks and against stale SCTP
 packets from a previous association. The CRC32c checksum is set by
 the sender of each SCTP packet to provide additional protection
 against data corruption in the network. The receiver of an SCTP
 packet with an invalid CRC32c checksum silently discards the packet.

2.5.7. Path Management

 The sending SCTP user is able to manipulate the set of transport
 addresses used as destinations for SCTP packets through the
 primitives described in Section 11. The SCTP path management
 function monitors reachability through heartbeats when other packet
 traffic is inadequate to provide this information and advises the
 SCTP user when reachability of any transport address of the peer
 endpoint changes. The path management function chooses the
 destination transport address for each outgoing SCTP packet based on
 the SCTP user’s instructions and the currently perceived reachability
 status of the eligible destination set. The path management function
 is also responsible for reporting the eligible set of local transport
 addresses to the peer endpoint during association startup, and for
 reporting the transport addresses returned from the peer endpoint to
 the SCTP user.

 At association startup, a primary path is defined for each SCTP
 endpoint, and is used for normal sending of SCTP packets.

 On the receiving end, the path management is responsible for
 verifying the existence of a valid SCTP association to which the
 inbound SCTP packet belongs before passing it for further processing.

 Note: Path Management and Packet Validation are done at the same
 time, so although described separately above, in reality they cannot
 be performed as separate items.

Stewart, et al. Expires 9 August 2022 [Page 16]

Internet-Draft Stream Control Transmission Protocol February 2022

2.6. Serial Number Arithmetic

 It is essential to remember that the actual Transmission Sequence
 Number space is finite, though very large. This space ranges from 0
 to 2^32 - 1. Since the space is finite, all arithmetic dealing with
 Transmission Sequence Numbers MUST be performed modulo 2^32. This
 unsigned arithmetic preserves the relationship of sequence numbers as
 they cycle from 2^32 - 1 to 0 again. There are some subtleties to
 computer modulo arithmetic, so great care has to be taken in
 programming the comparison of such values. When referring to TSNs,
 the symbol "<=" means "less than or equal" (modulo 2^32).

 Comparisons and arithmetic on TSNs in this document SHOULD use Serial
 Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 32.

 An endpoint SHOULD NOT transmit a DATA chunk with a TSN that is more
 than 2^31 - 1 above the beginning TSN of its current send window.
 Doing so will cause problems in comparing TSNs.

 Transmission Sequence Numbers wrap around when they reach 2^32 - 1.
 That is, the next TSN a DATA chunk MUST use after transmitting TSN =
 2^32 - 1 is TSN = 0.

 Any arithmetic done on Stream Sequence Numbers SHOULD use Serial
 Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 16.
 All other arithmetic and comparisons in this document use normal
 arithmetic.

2.7. Changes from RFC 4960

 SCTP was originally defined in [RFC4960], which this document
 obsoletes, if approved. Readers interested in the details of the
 various changes that this document incorporates are asked to consult
 [RFC8540].

 In addition to these and further editorial changes, the following
 changes have been incorporated in this document:

 * Update references.

 * Improve the language related to requirements levels.

 * Allow the ASSOCIATE primitive to take multiple remote addresses;
 also refer to the Socket API specification.

 * Refer to the PLPMTUD specification for path MTU discovery.

Stewart, et al. Expires 9 August 2022 [Page 17]

Internet-Draft Stream Control Transmission Protocol February 2022

 * Move the description of ICMP handling from an Appendix to the main
 text.

 * Remove the Appendix describing ECN handling from the document.

 * Describe the packet size handling more precisely by introducing
 PMTU, PMDCS and AMDCS.

 * Add the definition of control chunk.

 * Improve the description of the handling of INIT and INIT ACK
 chunks with invalid mandatory parameters.

 * Allow using L > 1 for Appropriate Byte Counting (ABC) during slow
 start.

 * Explicitly describe the reinitialization of the congestion
 controller on route changes.

 * Improve the terminology to make clear that this specification does
 not describe a full mesh architecture.

 * Improve the description of sequence number generation
 (Transmission Sequence Number and Stream Sequence Number).

 * Improve the description of reneging.

 * Don’t require the change of the cumulative TSN ACK anymore for
 increasing the congestion window. This improves the consistency
 with the handling in congestion avoidance.

 * Improve the description of the State Cookie.

 * Fix the API for retrieving messages in case of association
 failures.

3. SCTP Packet Format

 An SCTP packet is composed of a common header and chunks. A chunk
 contains either control information or user data.

 The SCTP packet format is shown below:

Stewart, et al. Expires 9 August 2022 [Page 18]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Common Header |
 +-+
 | Chunk #1 |
 +-+
 | ... |
 +-+
 | Chunk #n |
 +-+

 INIT, INIT ACK and SHUTDOWN COMPLETE chunks MUST NOT be bundled with
 any other chunk into an SCTP packet. All other chunks MAY be bundled
 to form an SCTP packet that does not exceed the PMTU. See
 Section 6.10 for more details on chunk bundling.

 If a user data message does not fit into one SCTP packet it can be
 fragmented into multiple chunks using the procedure defined in
 Section 6.9.

 All integer fields in an SCTP packet MUST be transmitted in network
 byte order, unless otherwise stated.

3.1. SCTP Common Header Field Descriptions

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port Number | Destination Port Number |
 +-+
 | Verification Tag |
 +-+
 | Checksum |
 +-+

 Source Port Number: 16 bits (unsigned integer)
 This is the SCTP sender’s port number. It can be used by the
 receiver in combination with the source IP address, the SCTP
 destination port, and possibly the destination IP address to
 identify the association to which this packet belongs. The source
 port number 0 MUST NOT be used.

 Destination Port Number: 16 bits (unsigned integer)
 This is the SCTP port number to which this packet is destined.
 The receiving host will use this port number to de-multiplex the
 SCTP packet to the correct receiving endpoint/application. The
 destination port number 0 MUST NOT be used.

Stewart, et al. Expires 9 August 2022 [Page 19]

Internet-Draft Stream Control Transmission Protocol February 2022

 Verification Tag: 32 bits (unsigned integer)
 The receiver of an SCTP packet uses the Verification Tag to
 validate the sender of this packet. On transmit, the value of the
 Verification Tag MUST be set to the value of the Initiate Tag
 received from the peer endpoint during the association
 initialization, with the following exceptions:

 * A packet containing an INIT chunk MUST have a zero Verification
 Tag.

 * A packet containing a SHUTDOWN COMPLETE chunk with the T bit
 set MUST have the Verification Tag copied from the packet with
 the SHUTDOWN ACK chunk.

 * A packet containing an ABORT chunk MAY have the verification
 tag copied from the packet that caused the ABORT chunk to be
 sent. For details see Section 8.4 and Section 8.5.

 Checksum: 32 bits (unsigned integer)
 This field contains the checksum of the SCTP packet. Its
 calculation is discussed in Section 6.8. SCTP uses the CRC32c
 algorithm as described in Appendix A for calculating the checksum.

3.2. Chunk Field Descriptions

 The figure below illustrates the field format for the chunks to be
 transmitted in the SCTP packet. Each chunk is formatted with a Chunk
 Type field, a chunk-specific Flag field, a Chunk Length field, and a
 Value field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Chunk Type | Chunk Flags | Chunk Length |
 +-+
 \ \
 / Chunk Value /
 \ \
 +-+

 Chunk Type: 8 bits (unsigned integer)
 This field identifies the type of information contained in the
 Chunk Value field. It takes a value from 0 to 254. The value of
 255 is reserved for future use as an extension field.

 The values of Chunk Types are defined as follows:

Stewart, et al. Expires 9 August 2022 [Page 20]

Internet-Draft Stream Control Transmission Protocol February 2022

 +==========+===+
 | ID Value | Chunk Type |
 +==========+===+
 | 0 | Payload Data (DATA) |
 +----------+---+
 | 1 | Initiation (INIT) |
 +----------+---+
 | 2 | Initiation Acknowledgement (INIT ACK) |
 +----------+---+
 | 3 | Selective Acknowledgement (SACK) |
 +----------+---+
 | 4 | Heartbeat Request (HEARTBEAT) |
 +----------+---+
 | 5 | Heartbeat Acknowledgement (HEARTBEAT ACK) |
 +----------+---+
 | 6 | Abort (ABORT) |
 +----------+---+
 | 7 | Shutdown (SHUTDOWN) |
 +----------+---+
 | 8 | Shutdown Acknowledgement (SHUTDOWN ACK) |
 +----------+---+
 | 9 | Operation Error (ERROR) |
 +----------+---+
 | 10 | State Cookie (COOKIE ECHO) |
 +----------+---+
 | 11 | Cookie Acknowledgement (COOKIE ACK) |
 +----------+---+
 | 12 | Reserved for Explicit Congestion |
 | | Notification Echo (ECNE) |
 +----------+---+
 | 13 | Reserved for Congestion Window Reduced |
 | | (CWR) |
 +----------+---+
 | 14 | Shutdown Complete (SHUTDOWN COMPLETE) |
 +----------+---+
 | 15 to 62 | available |
 +----------+---+
 | 63 | reserved for IETF-defined Chunk |
 | | Extensions |
 +----------+---+
 | 64 to | available |
 | 126 | |
 +----------+---+
 | 127 | reserved for IETF-defined Chunk |
 | | Extensions |
 +----------+---+
 | 128 to | available |
 | 190 | |

Stewart, et al. Expires 9 August 2022 [Page 21]

Internet-Draft Stream Control Transmission Protocol February 2022

 +----------+---+
 | 191 | reserved for IETF-defined Chunk |
 | | Extensions |
 +----------+---+
 | 192 to | available |
 | 254 | |
 +----------+---+
 | 255 | reserved for IETF-defined Chunk |
 | | Extensions |
 +----------+---+

 Table 1: Chunk Types

 Note: The ECNE and CWR chunk types are reserved for future use of
 Explicit Congestion Notification (ECN).

 Chunk Types are encoded such that the highest-order 2 bits specify
 the action that is taken if the processing endpoint does not
 recognize the Chunk Type.

 +----+--+
 | 00 | Stop processing this SCTP packet; discard the |
 | | unrecognized chunk and all further chunks. |
 +----+--+
 | 01 | Stop processing this SCTP packet, discard the |
 | | unrecognized chunk and all further chunks, and |
 | | report the unrecognized chunk in an ERROR chunk |
 | | using the ’Unrecognized Chunk Type’ error cause. |
 +----+--+
 | 10 | Skip this chunk and continue processing. |
 +----+--+
 | 11 | Skip this chunk and continue processing, but |
 | | report it in an ERROR chunk using the |
 | | ’Unrecognized Chunk Type’ error cause. |
 +----+--+

 Table 2: Processing of Unknown Chunks

 Chunk Flags: 8 bits
 The usage of these bits depends on the Chunk type as given by the
 Chunk Type field. Unless otherwise specified, they are set to 0
 on transmit and are ignored on receipt.

 Chunk Length: 16 bits (unsigned integer)

Stewart, et al. Expires 9 August 2022 [Page 22]

Internet-Draft Stream Control Transmission Protocol February 2022

 This value represents the size of the chunk in bytes, including
 the Chunk Type, Chunk Flags, Chunk Length, and Chunk Value fields.
 Therefore, if the Chunk Value field is zero-length, the Length
 field will be set to 4. The Chunk Length field does not count any
 chunk padding. However, it does include any padding of variable-
 length parameters other than the last parameter in the chunk.

 Note: A robust implementation is expected to accept the chunk
 whether or not the final padding has been included in the Chunk
 Length.

 Chunk Value: variable length
 The Chunk Value field contains the actual information to be
 transferred in the chunk. The usage and format of this field is
 dependent on the Chunk Type.

 The total length of a chunk (including Type, Length, and Value
 fields) MUST be a multiple of 4 bytes. If the length of the chunk is
 not a multiple of 4 bytes, the sender MUST pad the chunk with all
 zero bytes, and this padding is not included in the Chunk Length
 field. The sender MUST NOT pad with more than 3 bytes. The receiver
 MUST ignore the padding bytes.

 SCTP-defined chunks are described in detail in Section 3.3. The
 guidelines for IETF-defined chunk extensions can be found in
 Section 15.1 of this document.

3.2.1. Optional/Variable-Length Parameter Format

 Chunk values of SCTP control chunks consist of a chunk-type-specific
 header of required fields, followed by zero or more parameters. The
 optional and variable-length parameters contained in a chunk are
 defined in a Type-Length-Value format as shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Parameter Type | Parameter Length |
 +-+
 \ \
 / Parameter Value /
 \ \
 +-+

 Parameter Type: 16 bits (unsigned integer)
 The Type field is a 16-bit identifier of the type of parameter.
 It takes a value of 0 to 65534.

Stewart, et al. Expires 9 August 2022 [Page 23]

Internet-Draft Stream Control Transmission Protocol February 2022

 The value of 65535 is reserved for IETF-defined extensions.
 Values other than those defined in specific SCTP chunk
 descriptions are reserved for use by IETF.

 Parameter Length: 16 bits (unsigned integer)
 The Parameter Length field contains the size of the parameter in
 bytes, including the Parameter Type, Parameter Length, and
 Parameter Value fields. Thus, a parameter with a zero-length
 Parameter Value field would have a Parameter Length field of 4.
 The Parameter Length does not include any padding bytes.

 Parameter Value: variable length
 The Parameter Value field contains the actual information to be
 transferred in the parameter.

 The total length of a parameter (including Parameter Type, Parameter
 Length, and Parameter Value fields) MUST be a multiple of 4 bytes.
 If the length of the parameter is not a multiple of 4 bytes, the
 sender pads the parameter at the end (i.e., after the Parameter Value
 field) with all zero bytes. The length of the padding is not
 included in the Parameter Length field. A sender MUST NOT pad with
 more than 3 bytes. The receiver MUST ignore the padding bytes.

 The Parameter Types are encoded such that the highest-order 2 bits
 specify the action that is taken if the processing endpoint does not
 recognize the Parameter Type.

 +----+---+
 | 00 | Stop processing this parameter; do not process any |
 | | further parameters within this chunk. |
 +----+---+
 | 01 | Stop processing this parameter, do not process any |
 | | further parameters within this chunk, and report the |
 | | unrecognized parameter as described in Section 3.2.2. |
 +----+---+
 | 10 | Skip this parameter and continue processing. |
 +----+---+
 | 11 | Skip this parameter and continue processing but |
 | | report the unrecognized parameter as described in |
 | | Section 3.2.2. |
 +----+---+

 Table 3: Processing of Unknown Parameters

Stewart, et al. Expires 9 August 2022 [Page 24]

Internet-Draft Stream Control Transmission Protocol February 2022

 Please note that, when an INIT or INIT ACK chunk is received, in all
 four cases, an INIT ACK or COOKIE ECHO chunk is sent in response,
 respectively. In the 00 or 01 case, the processing of the parameters
 after the unknown parameter is canceled, but no processing already
 done is rolled back.

 The actual SCTP parameters are defined in the specific SCTP chunk
 sections. The rules for IETF-defined parameter extensions are
 defined in Section 15.3. Parameter types MUST be unique across all
 chunks. For example, the parameter type ’5’ is used to represent an
 IPv4 address (see Section 3.3.2.1). The value ’5’ then is reserved
 across all chunks to represent an IPv4 address and MUST NOT be reused
 with a different meaning in any other chunk.

3.2.2. Reporting of Unrecognized Parameters

 If the receiver of an INIT chunk detects unrecognized parameters and
 has to report them according to Section 3.2.1, it MUST put the
 "Unrecognized Parameter" parameter(s) in the INIT ACK chunk sent in
 response to the INIT chunk. Note that if the receiver of the INIT
 chunk is not going to establish an association (e.g., due to lack of
 resources), an "Unrecognized Parameter" error cause would not be
 included with any ABORT chunk being sent to the sender of the INIT
 chunk.

 If the receiver of any other chunk (e.g., INIT ACK) detects
 unrecognized parameters and has to report them according to
 Section 3.2.1, it SHOULD bundle the ERROR chunk containing the
 "Unrecognized Parameters" error cause with the chunk sent in response
 (e.g., COOKIE ECHO). If the receiver of an INIT ACK chunk cannot
 bundle the COOKIE ECHO chunk with the ERROR chunk, the ERROR chunk
 MAY be sent separately but not before the COOKIE ACK chunk has been
 received.

 Any time a COOKIE ECHO chunk is sent in a packet, it MUST be the
 first chunk.

3.3. SCTP Chunk Definitions

 This section defines the format of the different SCTP chunk types.

3.3.1. Payload Data (DATA) (0)

 The following format MUST be used for the DATA chunk:

Stewart, et al. Expires 9 August 2022 [Page 25]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0 | Res |I|U|B|E| Length |
 +-+
 | TSN |
 +-+
 | Stream Identifier S | Stream Sequence Number n |
 +-+
 | Payload Protocol Identifier |
 +-+
 \ \
 / User Data (seq n of Stream S) /
 \ \
 +-+

 Res: 4 bits
 All set to 0 on transmit and ignored on receipt.

 I bit: 1 bit
 The (I)mmediate bit MAY be set by the sender whenever the sender
 of a DATA chunk can benefit from the corresponding SACK chunk
 being sent back without delay. See Section 4 of [RFC7053] for a
 discussion of the benefits.

 U bit: 1 bit
 The (U)nordered bit, if set to 1, indicates that this is an
 unordered DATA chunk, and there is no Stream Sequence Number
 assigned to this DATA chunk. Therefore, the receiver MUST ignore
 the Stream Sequence Number field.

 After reassembly (if necessary), unordered DATA chunks MUST be
 dispatched to the upper layer by the receiver without any attempt
 to reorder.

 If an unordered user message is fragmented, each fragment of the
 message MUST have its U bit set to 1.

 B bit: 1 bit
 The (B)eginning fragment bit, if set, indicates the first fragment
 of a user message.

 E bit: 1 bit
 The (E)nding fragment bit, if set, indicates the last fragment of
 a user message.

 Length: 16 bits (unsigned integer)

Stewart, et al. Expires 9 August 2022 [Page 26]

Internet-Draft Stream Control Transmission Protocol February 2022

 This field indicates the length of the DATA chunk in bytes from
 the beginning of the type field to the end of the User Data field
 excluding any padding. A DATA chunk with one byte of user data
 will have Length set to 17 (indicating 17 bytes).

 A DATA chunk with a User Data field of length L will have the
 Length field set to (16 + L) (indicating 16 + L bytes) where L
 MUST be greater than 0.

 TSN: 32 bits (unsigned integer)
 This value represents the TSN for this DATA chunk. The valid
 range of TSN is from 0 to 4294967295 (2^32 - 1). TSN wraps back
 to 0 after reaching 4294967295.

 Stream Identifier S: 16 bits (unsigned integer)
 Identifies the stream to which the following user data belongs.

 Stream Sequence Number n: 16 bits (unsigned integer)
 This value represents the Stream Sequence Number of the following
 user data within the stream S. Valid range is 0 to 65535.

 When a user message is fragmented by SCTP for transport, the same
 Stream Sequence Number MUST be carried in each of the fragments of
 the message.

 Payload Protocol Identifier: 32 bits (unsigned integer)
 This value represents an application (or upper layer) specified
 protocol identifier. This value is passed to SCTP by its upper
 layer and sent to its peer. This identifier is not used by SCTP
 but can be used by certain network entities, as well as by the
 peer application, to identify the type of information being
 carried in this DATA chunk. This field MUST be sent even in
 fragmented DATA chunks (to make sure it is available for agents in
 the middle of the network). Note that this field is not touched
 by an SCTP implementation; The upper layer is responsible for the
 host to network byte order conversion of this field.

 The value 0 indicates that no application identifier is specified
 by the upper layer for this payload data.

 User Data: variable length
 This is the payload user data. The implementation MUST pad the
 end of the data to a 4-byte boundary with all-zero bytes. Any
 padding MUST NOT be included in the Length field. A sender MUST
 never add more than 3 bytes of padding.

Stewart, et al. Expires 9 August 2022 [Page 27]

Internet-Draft Stream Control Transmission Protocol February 2022

 An unfragmented user message MUST have both the B and E bits set to
 1. Setting both B and E bits to 0 indicates a middle fragment of a
 multi-fragment user message, as summarized in the following table:

 +---+---+---+
 | B | E | Description |
 +---+---+---+
 | 1 | 0 | First piece of a fragmented user message |
 +---+---+---+
 | 0 | 0 | Middle piece of a fragmented user message |
 +---+---+---+
 | 0 | 1 | Last piece of a fragmented user message |
 +---+---+---+
 | 1 | 1 | Unfragmented message |
 +---+---+---+

 Table 4: Fragment Description Flags

 When a user message is fragmented into multiple chunks, the TSNs are
 used by the receiver to reassemble the message. This means that the
 TSNs for each fragment of a fragmented user message MUST be strictly
 sequential.

 The TSNs of DATA chunks sent SHOULD be strictly sequential.

 Note: The extension described in [RFC8260] can be used to mitigate
 the head of line blocking when transferring large user messages.

3.3.2. Initiation (INIT) (1)

 This chunk is used to initiate an SCTP association between two
 endpoints. The format of the INIT chunk is shown below:

Stewart, et al. Expires 9 August 2022 [Page 28]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 1 | Chunk Flags | Chunk Length |
 +-+
 | Initiate Tag |
 +-+
 | Advertised Receiver Window Credit (a_rwnd) |
 +-+
 | Number of Outbound Streams | Number of Inbound Streams |
 +-+
 | Initial TSN |
 +-+
 \ \
 / Optional/Variable-Length Parameters /
 \ \
 +-+

 The following parameters are specified for the INIT chunk. Unless
 otherwise noted, each parameter MUST only be included once in the
 INIT chunk.

 +-----------------------------------+-----------+
 | Fixed Length Parameter | Status |
 +-----------------------------------+-----------+
 | Initiate Tag | Mandatory |
 +-----------------------------------+-----------+
 | Advertised Receiver Window Credit | Mandatory |
 +-----------------------------------+-----------+
 | Number of Outbound Streams | Mandatory |
 +-----------------------------------+-----------+
 | Number of Inbound Streams | Mandatory |
 +-----------------------------------+-----------+
 | Initial TSN | Mandatory |
 +-----------------------------------+-----------+

 Table 5: Fixed Length Parameters of INIT Chunks

Stewart, et al. Expires 9 August 2022 [Page 29]

Internet-Draft Stream Control Transmission Protocol February 2022

 +-----------------------------------+------------+----------------+
 | Variable Length Parameter | Status | Type Value |
 +-----------------------------------+------------+----------------+
 | IPv4 Address (Note 1) | Optional | 5 |
 +-----------------------------------+------------+----------------+
 | IPv6 Address (Note 1) | Optional | 6 |
 +-----------------------------------+------------+----------------+
 | Cookie Preservative | Optional | 9 |
 +-----------------------------------+------------+----------------+
 | Reserved for ECN Capable (Note 2) | Optional | 32768 (0x8000) |
 +-----------------------------------+------------+----------------+
 | Host Name Address (Note 3) | Deprecated | 11 |
 +-----------------------------------+------------+----------------+
 | Supported Address Types (Note 4) | Optional | 12 |
 +-----------------------------------+------------+----------------+

 Table 6: Variable Length Parameters of INIT Chunks

 Note 1: The INIT chunks can contain multiple addresses that can be
 IPv4 and/or IPv6 in any combination.

 Note 2: The ECN Capable field is reserved for future use of Explicit
 Congestion Notification.

 Note 3: An INIT chunk MUST NOT contain the Host Name Address
 parameter. The receiver of an INIT chunk containing a Host Name
 Address parameter MUST send an ABORT chunk and MAY include an
 "Unresolvable Address" error cause.

 Note 4: This parameter, when present, specifies all the address types
 the sending endpoint can support. The absence of this parameter
 indicates that the sending endpoint can support any address type.

 If an INIT chunk is received with all mandatory parameters that are
 specified for the INIT chunk, then the receiver SHOULD process the
 INIT chunk and send back an INIT ACK. The receiver of the INIT chunk
 MAY bundle an ERROR chunk with the COOKIE ACK chunk later. However,
 restrictive implementations MAY send back an ABORT chunk in response
 to the INIT chunk.

 The Chunk Flags field in INIT chunks is reserved, and all bits in it
 SHOULD be set to 0 by the sender and ignored by the receiver.

 Initiate Tag: 32 bits (unsigned integer)
 The receiver of the INIT chunk (the responding end) records the
 value of the Initiate Tag parameter. This value MUST be placed
 into the Verification Tag field of every SCTP packet that the
 receiver of the INIT chunk transmits within this association.

Stewart, et al. Expires 9 August 2022 [Page 30]

Internet-Draft Stream Control Transmission Protocol February 2022

 The Initiate Tag is allowed to have any value except 0. See
 Section 5.3.1 for more on the selection of the tag value.

 If the value of the Initiate Tag in a received INIT chunk is found
 to be 0, the receiver MUST silently discard the packet.

 Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
 integer)
 This value represents the dedicated buffer space, in number of
 bytes, the sender of the INIT chunk has reserved in association
 with this window.

 The Advertised Receiver Window Credit MUST NOT be smaller than
 1500.

 A receiver of an INIT chunk with the a_rwnd value set to a value
 smaller than 1500 MUST discard the packet, SHOULD send a packet in
 response containing an ABORT chunk and using the Initiate Tag as
 the Verification Tag, and MUST NOT change the state of any
 existing association.

 During the life of the association, this buffer space SHOULD NOT
 be reduced (i.e., dedicated buffers ought not to be taken away
 from this association); however, an endpoint MAY change the value
 of a_rwnd it sends in SACK chunks.

 Number of Outbound Streams (OS): 16 bits (unsigned integer)
 Defines the number of outbound streams the sender of this INIT
 chunk wishes to create in this association. The value of 0 MUST
 NOT be used.

 A receiver of an INIT chunk with the OS value set to 0 MUST
 discard the packet, SHOULD send a packet in response containing an
 ABORT chunk and using the Initiate Tag as the Verification Tag,
 and MUST NOT change the state of any existing association.

 Number of Inbound Streams (MIS): 16 bits (unsigned integer)
 Defines the maximum number of streams the sender of this INIT
 chunk allows the peer end to create in this association. The
 value 0 MUST NOT be used.

 Note: There is no negotiation of the actual number of streams but
 instead the two endpoints will use the min(requested, offered).
 See Section 5.1.1 for details.

Stewart, et al. Expires 9 August 2022 [Page 31]

Internet-Draft Stream Control Transmission Protocol February 2022

 A receiver of an INIT chunk with the MIS value set to 0 MUST
 discard the packet, SHOULD send a packet in response containing an
 ABORT chunk and using the Initiate Tag as the Verification Tag,
 and MUST NOT change the state of any existing association.

 Initial TSN (I-TSN): 32 bits (unsigned integer)
 Defines the initial TSN that the sender of the INIT chunk will
 use. The valid range is from 0 to 4294967295 and the Initial TSN
 SHOULD be set to a random value in that range. The methods
 described in [RFC4086] can be used for the Initial TSN
 randomization.

3.3.2.1. Optional or Variable-Length Parameters in INIT chunks

 The following parameters follow the Type-Length-Value format as
 defined in Section 3.2.1. Any Type-Length-Value fields MUST be
 placed after the fixed-length fields. (The fixed-length fields are
 defined in the previous section.)

3.3.2.1.1. IPv4 Address (5)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 5 | Length = 8 |
 +-+
 | IPv4 Address |
 +-+

 IPv4 Address: 32 bits (unsigned integer)
 Contains an IPv4 address of the sending endpoint. It is binary
 encoded.

3.3.2.1.2. IPv6 Address (6)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 6 | Length = 20 |
 +-+
 | |
 | IPv6 Address |
 | |
 | |
 +-+

 IPv6 Address: 128 bits (unsigned integer)

Stewart, et al. Expires 9 August 2022 [Page 32]

Internet-Draft Stream Control Transmission Protocol February 2022

 Contains an IPv6 [RFC8200] address of the sending endpoint. It is
 binary encoded.

 A sender MUST NOT use an IPv4-mapped IPv6 address [RFC4291], but
 SHOULD instead use an IPv4 Address parameter for an IPv4 address.

 Combined with the Source Port Number in the SCTP common header, the
 value passed in an IPv4 or IPv6 Address parameter indicates a
 transport address the sender of the INIT chunk will support for the
 association being initiated. That is, during the life time of this
 association, this IP address can appear in the source address field
 of an IP datagram sent from the sender of the INIT chunk, and can be
 used as a destination address of an IP datagram sent from the
 receiver of the INIT chunk.

 More than one IP Address parameter can be included in an INIT chunk
 when the sender of the INIT chunk is multi-homed. Moreover, a multi-
 homed endpoint might have access to different types of network; thus,
 more than one address type can be present in one INIT chunk, i.e.,
 IPv4 and IPv6 addresses are allowed in the same INIT chunk.

 If the INIT chunk contains at least one IP Address parameter, then
 the source address of the IP datagram containing the INIT chunk and
 any additional address(es) provided within the INIT can be used as
 destinations by the endpoint receiving the INIT chunk. If the INIT
 chunk does not contain any IP Address parameters, the endpoint
 receiving the INIT chunk MUST use the source address associated with
 the received IP datagram as its sole destination address for the
 association.

 Note that not using any IP Address parameters in the INIT and INIT
 ACK chunk is a way to make an association more likely to work in
 combination with Network Address Translation (NAT).

3.3.2.1.3. Cookie Preservative (9)

 The sender of the INIT chunk uses this parameter to suggest to the
 receiver of the INIT chunk a longer life-span for the State Cookie.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 9 | Length = 8 |
 +-+
 | Suggested Cookie Life-Span Increment (msec.) |
 +-+

 Suggested Cookie Life-Span Increment: 32 bits (unsigned integer)

Stewart, et al. Expires 9 August 2022 [Page 33]

Internet-Draft Stream Control Transmission Protocol February 2022

 This parameter indicates to the receiver how much increment in
 milliseconds the sender wishes the receiver to add to its default
 cookie life-span.

 This optional parameter MAY be added to the INIT chunk by the
 sender when it reattempts establishing an association with a peer
 to which its previous attempt of establishing the association
 failed due to a stale cookie operation error. The receiver MAY
 choose to ignore the suggested cookie life-span increase for its
 own security reasons.

3.3.2.1.4. Host Name Address (11)

 The sender of an INIT chunk or INIT ACK chunk MUST NOT include this
 parameter. The usage of the Host Name Address parameter is
 deprecated. The receiver of an INIT chunk or an INIT ACK containing
 a Host Name Address parameter MUST send an ABORT chunk and MAY
 include an "Unresolvable Address" error cause.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 11 | Length |
 +-+
 / Host Name /
 \ \
 +-+

 Host Name: variable length
 This field contains a host name in "host name syntax" per
 Section 2.1 of [RFC1123]. The method for resolving the host name
 is out of scope of SCTP.

 At least one null terminator is included in the Host Name string
 and MUST be included in the length.

3.3.2.1.5. Supported Address Types (12)

 The sender of INIT chunk uses this parameter to list all the address
 types it can support.

Stewart, et al. Expires 9 August 2022 [Page 34]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 12 | Length |
 +-+
 | Address Type #1 | Address Type #2 |
 +-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+

 Address Type: 16 bits (unsigned integer)
 This is filled with the type value of the corresponding address
 TLV (e.g., 5 for indicating IPv4, 6 for indicating IPv6). The
 value indicating the Host Name Address parameter MUST NOT be used
 when sending this parameter and MUST be ignored when receiving
 this parameter.

3.3.3. Initiation Acknowledgement (INIT ACK) (2)

 The INIT ACK chunk is used to acknowledge the initiation of an SCTP
 association. The format of the INIT ACK chunk is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 2 | Chunk Flags | Chunk Length |
 +-+
 | Initiate Tag |
 +-+
 | Advertised Receiver Window Credit |
 +-+
 | Number of Outbound Streams | Number of Inbound Streams |
 +-+
 | Initial TSN |
 +-+
 \ \
 / Optional/Variable-Length Parameters /
 \ \
 +-+

 The parameter part of INIT ACK is formatted similarly to the INIT
 chunk. The following parameters are specified for the INIT ACK
 chunk:

Stewart, et al. Expires 9 August 2022 [Page 35]

Internet-Draft Stream Control Transmission Protocol February 2022

 +-----------------------------------+-----------+
 | Fixed Length Parameter | Status |
 +-----------------------------------+-----------+
 | Initiate Tag | Mandatory |
 +-----------------------------------+-----------+
 | Advertised Receiver Window Credit | Mandatory |
 +-----------------------------------+-----------+
 | Number of Outbound Streams | Mandatory |
 +-----------------------------------+-----------+
 | Number of Inbound Streams | Mandatory |
 +-----------------------------------+-----------+
 | Initial TSN | Mandatory |
 +-----------------------------------+-----------+

 Table 7: Fixed Length Parameters of INIT ACK
 Chunks

 It uses two extra variable parameters: The State Cookie and the
 Unrecognized Parameter:

 +-----------------------------------+------------+----------------+
 | Variable Length Parameter | Status | Type Value |
 +-----------------------------------+------------+----------------+
 | State Cookie | Mandatory | 7 |
 +-----------------------------------+------------+----------------+
 | IPv4 Address (Note 1) | Optional | 5 |
 +-----------------------------------+------------+----------------+
 | IPv6 Address (Note 1) | Optional | 6 |
 +-----------------------------------+------------+----------------+
 | Unrecognized Parameter | Optional | 8 |
 +-----------------------------------+------------+----------------+
 | Reserved for ECN Capable (Note 2) | Optional | 32768 (0x8000) |
 +-----------------------------------+------------+----------------+
 | Host Name Address (Note 3) | Deprecated | 11 |
 +-----------------------------------+------------+----------------+

 Table 8: Variable Length Parameters of INIT ACK Chunks

 Note 1: The INIT ACK chunks can contain any number of IP address
 parameters that can be IPv4 and/or IPv6 in any combination.

 Note 2: The ECN Capable field is reserved for future use of Explicit
 Congestion Notification.

 Note 3: An INIT ACK chunk MUST NOT contain the Host Name Address
 parameter. The receiver of INIT ACK chunks containing a Host Name
 Address parameter MUST send an ABORT chunk and MAY include an
 "Unresolvable Address" error cause.

Stewart, et al. Expires 9 August 2022 [Page 36]

Internet-Draft Stream Control Transmission Protocol February 2022

 The Chunk Flags field in INIT ACK chunks is reserved, and all bits in
 it SHOULD be set to 0 by the sender and ignored by the receiver.

 Initiate Tag: 32 bits (unsigned integer)
 The receiver of the INIT ACK chunk records the value of the
 Initiate Tag parameter. This value MUST be placed into the
 Verification Tag field of every SCTP packet that the receiver of
 the INIT ACK chunk transmits within this association.

 The Initiate Tag MUST NOT take the value 0. See Section 5.3.1 for
 more on the selection of the Initiate Tag value.

 If an endpoint in the COOKIE-WAIT state receives an INIT ACK chunk
 with the Initiate Tag set to 0, it MUST destroy the TCB and SHOULD
 send an ABORT chunk with the T bit set. If such an INIT-ACK chunk
 is received in any state other than CLOSED or COOKIE-WAIT, it
 SHOULD be discarded silently (see Section 5.2.3).

 Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
 integer)
 This value represents the dedicated buffer space, in number of
 bytes, the sender of the INIT ACK chunk has reserved in
 association with this window.

 The Advertised Receiver Window Credit MUST NOT be smaller than
 1500.

 A receiver of an INIT ACK chunk with the a_rwnd value set to a
 value smaller than 1500 MUST discard the packet, SHOULD send a
 packet in response containing an ABORT chunk and using the
 Initiate Tag as the Verification Tag, and MUST NOT change the
 state of any existing association.

 During the life of the association, this buffer space SHOULD NOT
 be reduced (i.e., dedicated buffers ought not to be taken away
 from this association); however, an endpoint MAY change the value
 of a_rwnd it sends in SACK chunks.

 Number of Outbound Streams (OS): 16 bits (unsigned integer)
 Defines the number of outbound streams the sender of this INIT ACK
 chunk wishes to create in this association. The value of 0 MUST
 NOT be used, and the value MUST NOT be greater than the MIS value
 sent in the INIT chunk.

Stewart, et al. Expires 9 August 2022 [Page 37]

Internet-Draft Stream Control Transmission Protocol February 2022

 If an endpoint in the COOKIE-WAIT state receives an INIT ACK chunk
 with the OS value set to 0, it MUST destroy the TCB and SHOULD
 send an ABORT chunk. If such an INIT-ACK chunk is received in any
 state other than CLOSED or COOKIE-WAIT, it SHOULD be discarded
 silently (see Section 5.2.3).

 Number of Inbound Streams (MIS): 16 bits (unsigned integer)
 Defines the maximum number of streams the sender of this INIT ACK
 chunk allows the peer end to create in this association. The
 value 0 MUST NOT be used.

 Note: There is no negotiation of the actual number of streams but
 instead the two endpoints will use the min(requested, offered).
 See Section 5.1.1 for details.

 If an endpoint in the COOKIE-WAIT state receives an INIT ACK chunk
 with the MIS value set to 0, it MUST destroy the TCB and SHOULD
 send an ABORT chunk. If such an INIT-ACK chunk is received in any
 state other than CLOSED or COOKIE-WAIT, it SHOULD be discarded
 silently (see Section 5.2.3).

 Initial TSN (I-TSN): 32 bits (unsigned integer)
 Defines the initial TSN that the sender of the INIT ACK chunk will
 use. The valid range is from 0 to 4294967295 and the Initial TSN
 SHOULD be set to a random value in that range. The methods
 described in [RFC4086] can be used for the Initial TSN
 randomization.

 Implementation Note: An implementation MUST be prepared to receive an
 INIT ACK chunk that is quite large (more than 1500 bytes) due to the
 variable size of the State Cookie and the variable address list. For
 example if a responder to the INIT chunk has 1000 IPv4 addresses it
 wishes to send, it would need at least 8,000 bytes to encode this in
 the INIT ACK chunk.

 If an INIT ACK chunk is received with all mandatory parameters that
 are specified for the INIT ACK chunk, then the receiver SHOULD
 process the INIT ACK chunk and send back a COOKIE ECHO chunk. The
 receiver of the INIT ACK chunk MAY bundle an ERROR chunk with the
 COOKIE ECHO chunk. However, restrictive implementations MAY send
 back an ABORT chunk in response to the INIT ACK chunk.

 In combination with the Source Port carried in the SCTP common
 header, each IP Address parameter in the INIT ACK chunk indicates to
 the receiver of the INIT ACK chunk a valid transport address
 supported by the sender of the INIT ACK chunk for the life time of
 the association being initiated.

Stewart, et al. Expires 9 August 2022 [Page 38]

Internet-Draft Stream Control Transmission Protocol February 2022

 If the INIT ACK chunk contains at least one IP Address parameter,
 then the source address of the IP datagram containing the INIT ACK
 chunk and any additional address(es) provided within the INIT ACK
 chunk MAY be used as destinations by the receiver of the INIT ACK
 chunk. If the INIT ACK chunk does not contain any IP Address
 parameters, the receiver of the INIT ACK chunk MUST use the source
 address associated with the received IP datagram as its sole
 destination address for the association.

 The State Cookie and Unrecognized Parameters use the Type-Length-
 Value format as defined in Section 3.2.1 and are described below.
 The other fields are defined the same as their counterparts in the
 INIT chunk.

3.3.3.1. Optional or Variable-Length Parameters in INIT ACK chunks

 The State Cookie and Unrecognized Parameters use the Type-Length-
 Value format as defined in Section 3.2.1 and are described below.
 The IPv4 Address Parameter is described in Section 3.3.2.1.1, and the
 IPv6 Address Parameter is described in Section 3.3.2.1.2. The Host
 Name Address Parameter is described in Section 3.3.2.1.4 and MUST NOT
 be included in an INIT ACK chunk. Any Type-Length-Value fields MUST
 be placed after the fixed-length fields. (The fixed-length fields
 are defined in the previous section.)

3.3.3.1.1. State Cookie (7)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 7 | Length |
 +-+
 / Cookie /
 \ \
 +-+

 Cookie: variable length
 This parameter value MUST contain all the necessary state and
 parameter information required for the sender of this INIT ACK
 chunk to create the association, along with a Message
 Authentication Code (MAC). See Section 5.1.3 for details on State
 Cookie definition.

3.3.3.1.2. Unrecognized Parameter (8)

 This parameter is returned to the originator of the INIT chunk when
 the INIT chunk contains an unrecognized parameter that has a type
 that indicates it SHOULD be reported to the sender.

Stewart, et al. Expires 9 August 2022 [Page 39]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 8 | Length |
 +-+
 / Unrecognized Parameter /
 \ \
 +-+

 Unrecognized Parameter: variable length
 The parameter value field will contain an unrecognized parameter
 copied from the INIT chunk complete with Parameter Type, Length,
 and Value fields.

3.3.4. Selective Acknowledgement (SACK) (3)

 This chunk is sent to the peer endpoint to acknowledge received DATA
 chunks and to inform the peer endpoint of gaps in the received
 subsequences of DATA chunks as represented by their TSNs.

 The SACK chunk MUST contain the Cumulative TSN Ack, Advertised
 Receiver Window Credit (a_rwnd), Number of Gap Ack Blocks, and Number
 of Duplicate TSNs fields.

 By definition, the value of the Cumulative TSN Ack parameter is the
 last TSN received before a break in the sequence of received TSNs
 occurs; the next TSN value following this one has not yet been
 received at the endpoint sending the SACK chunk. This parameter
 therefore acknowledges receipt of all TSNs less than or equal to its
 value.

 The handling of a_rwnd by the receiver of the SACK chunk is discussed
 in detail in Section 6.2.1.

 The SACK chunk also contains zero or more Gap Ack Blocks. Each Gap
 Ack Block acknowledges a subsequence of TSNs received following a
 break in the sequence of received TSNs. The Gap Ack Blocks SHOULD be
 isolated. This means that the TSN just before each Gap Ack Block and
 the TSN just after each Gap Ack Block have not been received. By
 definition, all TSNs acknowledged by Gap Ack Blocks are greater than
 the value of the Cumulative TSN Ack.

Stewart, et al. Expires 9 August 2022 [Page 40]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 3 | Chunk Flags | Chunk Length |
 +-+
 | Cumulative TSN Ack |
 +-+
 | Advertised Receiver Window Credit (a_rwnd) |
 +-+
 | Number of Gap Ack Blocks = N | Number of Duplicate TSNs = M |
 +-+
 | Gap Ack Block #1 Start | Gap Ack Block #1 End |
 +-+
 / /
 \ ... \
 / /
 +-+
 | Gap Ack Block #N Start | Gap Ack Block #N End |
 +-+
 | Duplicate TSN 1 |
 +-+
 / /
 \ ... \
 / /
 +-+
 | Duplicate TSN M |
 +-+

 Chunk Flags: 8 bits
 All set to 0 on transmit and ignored on receipt.

 Cumulative TSN Ack: 32 bits (unsigned integer)
 The largest TSN, such that all TSNs smaller than or equal to it
 have been received and the next one has not been received. In the
 case where no DATA chunk has been received, this value is set to
 the peer’s Initial TSN minus one.

 Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
 integer)
 This field indicates the updated receive buffer space in bytes of
 the sender of this SACK chunk; see Section 6.2.1 for details.

 Number of Gap Ack Blocks: 16 bits (unsigned integer)
 Indicates the number of Gap Ack Blocks included in this SACK
 chunk.

 Number of Duplicate TSNs: 16 bit

Stewart, et al. Expires 9 August 2022 [Page 41]

Internet-Draft Stream Control Transmission Protocol February 2022

 This field contains the number of duplicate TSNs the endpoint has
 received. Each duplicate TSN is listed following the Gap Ack
 Block list.

 Gap Ack Blocks:
 These fields contain the Gap Ack Blocks. They are repeated for
 each Gap Ack Block up to the number of Gap Ack Blocks defined in
 the Number of Gap Ack Blocks field. All DATA chunks with TSNs
 greater than or equal to (Cumulative TSN Ack + Gap Ack Block
 Start) and less than or equal to (Cumulative TSN Ack + Gap Ack
 Block End) of each Gap Ack Block are assumed to have been received
 correctly.

 Gap Ack Block Start: 16 bits (unsigned integer)
 Indicates the Start offset TSN for this Gap Ack Block. To
 calculate the actual TSN number the Cumulative TSN Ack is added to
 this offset number. This calculated TSN identifies the lowest TSN
 in this Gap Ack Block that has been received.

 Gap Ack Block End: 16 bits (unsigned integer)
 Indicates the End offset TSN for this Gap Ack Block. To calculate
 the actual TSN number, the Cumulative TSN Ack is added to this
 offset number. This calculated TSN identifies the highest TSN in
 this Gap Ack Block that has been received.

 For example, assume that the receiver has the following DATA
 chunks newly arrived at the time when it decides to send a
 Selective ACK,

 | TSN = 17 |

 | | <- still missing

 | TSN = 15 |

 | TSN = 14 |

 | | <- still missing

 | TSN = 12 |

 | TSN = 11 |

 | TSN = 10 |

Stewart, et al. Expires 9 August 2022 [Page 42]

Internet-Draft Stream Control Transmission Protocol February 2022

 then the parameter part of the SACK chunk MUST be constructed as
 follows (assuming the new a_rwnd is set to 4660 by the sender):

 +-------------------+-------------------+
 | Cumulative TSN Ack = 12 |
 +-------------------+-------------------+
 | a_rwnd = 4660 |
 +-------------------+-------------------+
 | num of block = 2 | num of dup = 0 |
 +-------------------+-------------------+
 |block #1 start = 2 | block #1 end = 3 |
 +-------------------+-------------------+
 |block #2 start = 5 | block #2 end = 5 |
 +-------------------+-------------------+

 Duplicate TSN: 32 bits (unsigned integer)
 Indicates the number of times a TSN was received in duplicate
 since the last SACK chunk was sent. Every time a receiver gets a
 duplicate TSN (before sending the SACK chunk), it adds it to the
 list of duplicates. The duplicate count is reinitialized to zero
 after sending each SACK chunk.

 For example, if a receiver were to get the TSN 19 three times it
 would list 19 twice in the outbound SACK chunk. After sending the
 SACK chunk, if it received yet one more TSN 19 it would list 19 as
 a duplicate once in the next outgoing SACK chunk.

3.3.5. Heartbeat Request (HEARTBEAT) (4)

 An endpoint SHOULD send a HEARTBEAT (HB) chunk to its peer endpoint
 to probe the reachability of a particular destination transport
 address defined in the present association.

 The parameter field contains the Heartbeat Information, which is a
 variable-length opaque data structure understood only by the sender.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 4 | Chunk Flags | Heartbeat Length |
 +-+
 \ \
 / Heartbeat Information TLV (Variable-Length) /
 \ \
 +-+

 Chunk Flags: 8 bits
 Set to 0 on transmit and ignored on receipt.

Stewart, et al. Expires 9 August 2022 [Page 43]

Internet-Draft Stream Control Transmission Protocol February 2022

 Heartbeat Length: 16 bits (unsigned integer)
 Set to the size of the chunk in bytes, including the chunk header
 and the Heartbeat Information field.

 Heartbeat Information: variable length
 Defined as a variable-length parameter using the format described
 in Section 3.2.1, i.e.:

 +---------------------+-----------+------------+
 | Variable Parameters | Status | Type Value |
 +---------------------+-----------+------------+
 | Heartbeat Info | Mandatory | 1 |
 +---------------------+-----------+------------+

 Table 9: Variable Length Parameters of
 HEARTBEAT Chunks

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Heartbeat Info Type = 1 | HB Info Length |
 +-+
 / Sender-Specific Heartbeat Info /
 \ \
 +-+

 The Sender-Specific Heartbeat Info field SHOULD include
 information about the sender’s current time when this HEARTBEAT
 chunk is sent and the destination transport address to which this
 HEARTBEAT chunk is sent (see Section 8.3). This information is
 simply reflected back by the receiver in the HEARTBEAT ACK chunk
 (see Section 3.3.6). Note also that the HEARTBEAT chunk is both
 for reachability checking and for path verification (see
 Section 5.4). When a HEARTBEAT chunk is being used for path
 verification purposes, it MUST include a random nonce of length
 64-bit or longer ([RFC4086] provides some information on
 randomness guidelines).

3.3.6. Heartbeat Acknowledgement (HEARTBEAT ACK) (5)

 An endpoint MUST send this chunk to its peer endpoint as a response
 to a HEARTBEAT chunk (see Section 8.3). A packet containing the
 HEARTBEAT ACK chunk is always sent to the source IP address of the IP
 datagram containing the HEARTBEAT chunk to which this HEARTBEAT ACK
 chunk is responding.

 The parameter field contains a variable-length opaque data structure.

Stewart, et al. Expires 9 August 2022 [Page 44]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 5 | Chunk Flags | Heartbeat Ack Length |
 +-+
 \ \
 / Heartbeat Information TLV (Variable-Length) /
 \ \
 +-+

 Chunk Flags: 8 bits
 Set to 0 on transmit and ignored on receipt.

 Heartbeat Ack Length: 16 bits (unsigned integer)
 Set to the size of the chunk in bytes, including the chunk header
 and the Heartbeat Information field.

 Heartbeat Information: variable length
 This field MUST contain the Heartbeat Info parameter (as defined
 in Section 3.3.5) of the Heartbeat Request to which this Heartbeat
 Acknowledgement is responding.

 +---------------------+-----------+------------+
 | Variable Parameters | Status | Type Value |
 +---------------------+-----------+------------+
 | Heartbeat Info | Mandatory | 1 |
 +---------------------+-----------+------------+

 Table 10: Variable Length Parameters of
 HEARTBEAT ACK Chunks

3.3.7. Abort Association (ABORT) (6)

 The ABORT chunk is sent to the peer of an association to close the
 association. The ABORT chunk MAY contain Cause Parameters to inform
 the receiver about the reason of the abort. DATA chunks MUST NOT be
 bundled with ABORT chunks. Control chunks (except for INIT, INIT
 ACK, and SHUTDOWN COMPLETE) MAY be bundled with an ABORT chunk, but
 they MUST be placed before the ABORT chunk in the SCTP packet,
 otherwise they will be ignored by the receiver.

 If an endpoint receives an ABORT chunk with a format error or no TCB
 is found, it MUST silently discard it. Moreover, under any
 circumstances, an endpoint that receives an ABORT chunk MUST NOT
 respond to that ABORT chunk by sending an ABORT chunk of its own.

Stewart, et al. Expires 9 August 2022 [Page 45]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 6 | Reserved |T| Length |
 +-+
 \ \
 / zero or more Error Causes /
 \ \
 +-+

 Chunk Flags: 8 bits
 Reserved: 7 bits
 Set to 0 on transmit and ignored on receipt.

 T bit: 1 bit
 The T bit is set to 0 if the sender filled in the Verification
 Tag expected by the peer. If the Verification Tag is
 reflected, the T bit MUST be set to 1. Reflecting means that
 the sent Verification Tag is the same as the received one.

 Length: 16 bits (unsigned integer)
 Set to the size of the chunk in bytes, including the chunk header
 and all the Error Cause fields present.

 See Section 3.3.10 for Error Cause definitions.

 Note: Special rules apply to this chunk for verification; please see
 Section 8.5.1 for details.

3.3.8. Shutdown Association (SHUTDOWN) (7)

 An endpoint in an association MUST use this chunk to initiate a
 graceful close of the association with its peer. This chunk has the
 following format.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 7 | Chunk Flags | Length = 8 |
 +-+
 | Cumulative TSN Ack |
 +-+

 Chunk Flags: 8 bits
 Set to 0 on transmit and ignored on receipt.

 Length: 16 bits (unsigned integer)
 Indicates the length of the parameter. Set to 8.

Stewart, et al. Expires 9 August 2022 [Page 46]

Internet-Draft Stream Control Transmission Protocol February 2022

 Cumulative TSN Ack: 32 bits (unsigned integer)
 The largest TSN, such that all TSNs smaller than or equal to it
 have been received and the next one has not been received.

 Note: Since the SHUTDOWN chunk does not contain Gap Ack Blocks, it
 cannot be used to acknowledge TSNs received out of order. In a SACK
 chunk, lack of Gap Ack Blocks that were previously included indicates
 that the data receiver reneged on the associated DATA chunks.

 Since the SHUTDOWN chunk does not contain Gap Ack Blocks, the
 receiver of the SHUTDOWN chunk MUST NOT interpret the lack of a Gap
 Ack Block as a renege. (See Section 6.2 for information on
 reneging.)

 The sender of the SHUTDOWN chunk MAY bundle a SACK chunk to indicate
 any gaps in the received TSNs.

3.3.9. Shutdown Acknowledgement (SHUTDOWN ACK) (8)

 This chunk MUST be used to acknowledge the receipt of the SHUTDOWN
 chunk at the completion of the shutdown process; see Section 9.2 for
 details.

 The SHUTDOWN ACK chunk has no parameters.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 8 | Chunk Flags | Length = 4 |
 +-+

 Chunk Flags: 8 bits
 Set to 0 on transmit and ignored on receipt.

3.3.10. Operation Error (ERROR) (9)

 An endpoint sends this chunk to its peer endpoint to notify it of
 certain error conditions. It contains one or more error causes. An
 Operation Error is not considered fatal in and of itself, but the
 corresponding error cause MAY be used with an ABORT chunk to report a
 fatal condition. An ERROR chunk has the following format:

Stewart, et al. Expires 9 August 2022 [Page 47]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 9 | Chunk Flags | Length |
 +-+
 \ \
 / one or more Error Causes /
 \ \
 +-+

 Chunk Flags: 8 bits
 Set to 0 on transmit and ignored on receipt.

 Length: 16 bits (unsigned integer)
 Set to the size of the chunk in bytes, including the chunk header
 and all the Error Cause fields present.

 Error causes are defined as variable-length parameters using the
 format described in Section 3.2.1, that is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code | Cause Length |
 +-+
 / Cause-Specific Information /
 \ \
 +-+

 Cause Code: 16 bits (unsigned integer)
 Defines the type of error conditions being reported.

Stewart, et al. Expires 9 August 2022 [Page 48]

Internet-Draft Stream Control Transmission Protocol February 2022

 +-------+--+
 | Value | Cause Code |
 +-------+--+
 | 1 | Invalid Stream Identifier |
 +-------+--+
 | 2 | Missing Mandatory Parameter |
 +-------+--+
 | 3 | Stale Cookie Error |
 +-------+--+
 | 4 | Out of Resource |
 +-------+--+
 | 5 | Unresolvable Address |
 +-------+--+
 | 6 | Unrecognized Chunk Type |
 +-------+--+
 | 7 | Invalid Mandatory Parameter |
 +-------+--+
 | 8 | Unrecognized Parameters |
 +-------+--+
 | 9 | No User Data |
 +-------+--+
 | 10 | Cookie Received While Shutting Down |
 +-------+--+
 | 11 | Restart of an Association with New Addresses |
 +-------+--+
 | 12 | User Initiated Abort |
 +-------+--+
 | 13 | Protocol Violation |
 +-------+--+

 Table 11: Cause Code

 Cause Length: 16 bits (unsigned integer)
 Set to the size of the parameter in bytes, including the Cause
 Code, Cause Length, and Cause-Specific Information fields.

 Cause-Specific Information: variable length
 This field carries the details of the error condition.

 Section 3.3.10.1 - Section 3.3.10.13 define error causes for SCTP.
 Guidelines for the IETF to define new error cause values are
 discussed in Section 15.4.

3.3.10.1. Invalid Stream Identifier (1)

 Indicates that the endpoint received a DATA chunk sent using a
 nonexistent stream.

Stewart, et al. Expires 9 August 2022 [Page 49]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 1 | Cause Length = 8 |
 +-+
 | Stream Identifier | (Reserved) |
 +-+

 Stream Identifier: 16 bits (unsigned integer)
 Contains the Stream Identifier of the DATA chunk received in
 error.

 Reserved: 16 bits
 This field is reserved. It is set to all 0’s on transmit and
 ignored on receipt.

3.3.10.2. Missing Mandatory Parameter (2)

 Indicates that one or more mandatory TLV parameters are missing in a
 received INIT or INIT ACK chunk.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 2 | Cause Length = 8 + N * 2 |
 +-+
 | Number of missing params = N |
 +-+
 | Missing Param Type #1 | Missing Param Type #2 |
 +-+
 | Missing Param Type #N-1 | Missing Param Type #N |
 +-+

 Number of Missing params: 32 bits (unsigned integer)
 This field contains the number of parameters contained in the
 Cause-Specific Information field.

 Missing Param Type: 16 bits (unsigned integer)
 Each field will contain the missing mandatory parameter number.

3.3.10.3. Stale Cookie Error (3)

 Indicates the receipt of a valid State Cookie that has expired.

Stewart, et al. Expires 9 August 2022 [Page 50]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 3 | Cause Length = 8 |
 +-+
 | Measure of Staleness (usec.) |
 +-+

 Measure of Staleness: 32 bits (unsigned integer)
 This field contains the difference, rounded up in microseconds,
 between the current time and the time the State Cookie expired.

 The sender of this error cause MAY choose to report how long past
 expiration the State Cookie is by including a non-zero value in
 the Measure of Staleness field. If the sender does not wish to
 provide the Measure of Staleness, it SHOULD set this field to the
 value of zero.

3.3.10.4. Out of Resource (4)

 Indicates that the sender is out of resource. This is usually sent
 in combination with or within an ABORT chunk.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 4 | Cause Length = 4 |
 +-+

3.3.10.5. Unresolvable Address (5)

 Indicates that the sender is not able to resolve the specified
 address parameter (e.g., type of address is not supported by the
 sender). This is usually sent in combination with or within an ABORT
 chunk.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 5 | Cause Length |
 +-+
 / Unresolvable Address /
 \ \
 +-+

 Unresolvable Address: variable length

Stewart, et al. Expires 9 August 2022 [Page 51]

Internet-Draft Stream Control Transmission Protocol February 2022

 The Unresolvable Address field contains the complete Type, Length,
 and Value of the address parameter (or Host Name parameter) that
 contains the unresolvable address or host name.

3.3.10.6. Unrecognized Chunk Type (6)

 This error cause is returned to the originator of the chunk if the
 receiver does not understand the chunk and the upper bits of the
 ’Chunk Type’ are set to 01 or 11.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 6 | Cause Length |
 +-+
 / Unrecognized Chunk /
 \ \
 +-+

 Unrecognized Chunk: variable length
 The Unrecognized Chunk field contains the unrecognized chunk from
 the SCTP packet complete with Chunk Type, Chunk Flags, and Chunk
 Length.

3.3.10.7. Invalid Mandatory Parameter (7)

 This error cause is returned to the originator of an INIT or INIT ACK
 chunk when one of the mandatory parameters is set to an invalid
 value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 7 | Cause Length = 4 |
 +-+

3.3.10.8. Unrecognized Parameters (8)

 This error cause is returned to the originator of the INIT ACK chunk
 if the receiver does not recognize one or more Optional TLV
 parameters in the INIT ACK chunk.

Stewart, et al. Expires 9 August 2022 [Page 52]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 8 | Cause Length |
 +-+
 / Unrecognized Parameters /
 \ \
 +-+

 Unrecognized Parameters: variable length
 The Unrecognized Parameters field contains the unrecognized
 parameters copied from the INIT ACK chunk complete with TLV. This
 error cause is normally contained in an ERROR chunk bundled with
 the COOKIE ECHO chunk when responding to the INIT ACK chunk, when
 the sender of the COOKIE ECHO chunk wishes to report unrecognized
 parameters.

3.3.10.9. No User Data (9)

 This error cause is returned to the originator of a DATA chunk if a
 received DATA chunk has no user data.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 9 | Cause Length = 8 |
 +-+
 | TSN |
 +-+

 TSN: 32 bits (unsigned integer)
 This parameter contains the TSN of the DATA chunk received with no
 user data field.

 This cause code is normally returned in an ABORT chunk (see
 Section 6.2).

3.3.10.10. Cookie Received While Shutting Down (10)

 A COOKIE ECHO chunk was received while the endpoint was in the
 SHUTDOWN-ACK-SENT state. This error is usually returned in an ERROR
 chunk bundled with the retransmitted SHUTDOWN ACK chunk.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 10 | Cause Length = 4 |
 +-+

Stewart, et al. Expires 9 August 2022 [Page 53]

Internet-Draft Stream Control Transmission Protocol February 2022

3.3.10.11. Restart of an Association with New Addresses (11)

 An INIT chunk was received on an existing association. But the INIT
 chunk added addresses to the association that were previously not
 part of the association. The new addresses are listed in the error
 cause. This error cause is normally sent as part of an ABORT chunk
 refusing the INIT chunk (see Section 5.2).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 11 | Cause Length |
 +-+
 / New Address TLVs /
 \ \
 +-+

 Note: Each New Address TLV is an exact copy of the TLV that was found
 in the INIT chunk that was new, including the Parameter Type and the
 Parameter Length.

3.3.10.12. User-Initiated Abort (12)

 This error cause MAY be included in ABORT chunks that are sent
 because of an upper-layer request. The upper layer can specify an
 Upper Layer Abort Reason that is transported by SCTP transparently
 and MAY be delivered to the upper-layer protocol at the peer.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 12 | Cause Length |
 +-+
 / Upper Layer Abort Reason /
 \ \
 +-+

3.3.10.13. Protocol Violation (13)

 This error cause MAY be included in ABORT chunks that are sent
 because an SCTP endpoint detects a protocol violation of the peer
 that is not covered by the error causes described in Section 3.3.10.1
 to Section 3.3.10.12. An implementation MAY provide additional
 information specifying what kind of protocol violation has been
 detected.

Stewart, et al. Expires 9 August 2022 [Page 54]

Internet-Draft Stream Control Transmission Protocol February 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Cause Code = 13 | Cause Length |
 +-+
 / Additional Information /
 \ \
 +-+

3.3.11. Cookie Echo (COOKIE ECHO) (10)

 This chunk is used only during the initialization of an association.
 It is sent by the initiator of an association to its peer to complete
 the initialization process. This chunk MUST precede any DATA chunk
 sent within the association, but MAY be bundled with one or more DATA
 chunks in the same packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 10 | Chunk Flags | Length |
 +-+
 / Cookie /
 \ \
 +-+

 Chunk Flags: 8 bits
 Set to 0 on transmit and ignored on receipt.

 Length: 16 bits (unsigned integer)
 Set to the size of the chunk in bytes, including the 4 bytes of
 the chunk header and the size of the cookie.

 Cookie: variable size
 This field MUST contain the exact cookie received in the State
 Cookie parameter from the previous INIT ACK chunk.

 An implementation SHOULD make the cookie as small as possible to
 ensure interoperability.

 Note: A Cookie Echo does not contain a State Cookie parameter;
 instead, the data within the State Cookie’s Parameter Value
 becomes the data within the Cookie Echo’s Chunk Value. This
 allows an implementation to change only the first 2 bytes of the
 State Cookie parameter to become a COOKIE ECHO chunk.

Stewart, et al. Expires 9 August 2022 [Page 55]

Internet-Draft Stream Control Transmission Protocol February 2022

3.3.12. Cookie Acknowledgement (COOKIE ACK) (11)

 This chunk is used only during the initialization of an association.
 It is used to acknowledge the receipt of a COOKIE ECHO chunk. This
 chunk MUST precede any DATA or SACK chunk sent within the
 association, but MAY be bundled with one or more DATA chunks or SACK
 chunk’s in the same SCTP packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 11 | Chunk Flags | Length = 4 |
 +-+

 Chunk Flags: 8 bits
 Set to 0 on transmit and ignored on receipt.

3.3.13. Shutdown Complete (SHUTDOWN COMPLETE) (14)

 This chunk MUST be used to acknowledge the receipt of the SHUTDOWN
 ACK chunk at the completion of the shutdown process; see Section 9.2
 for details.

 The SHUTDOWN COMPLETE chunk has no parameters.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 14 | Reserved |T| Length = 4 |
 +-+

 Chunk Flags: 8 bits
 Reserved: 7 bits
 Set to 0 on transmit and ignored on receipt.

 T bit: 1 bit
 The T bit is set to 0 if the sender filled in the Verification
 Tag expected by the peer. If the Verification Tag is
 reflected, the T bit MUST be set to 1. Reflecting means that
 the sent Verification Tag is the same as the received one.

 Note: Special rules apply to this chunk for verification, please see
 Section 8.5.1 for details.

Stewart, et al. Expires 9 August 2022 [Page 56]

Internet-Draft Stream Control Transmission Protocol February 2022

4. SCTP Association State Diagram

 During the life time of an SCTP association, the SCTP endpoint’s
 association progresses from one state to another in response to
 various events. The events that might potentially advance an
 association’s state include:

 * SCTP user primitive calls, e.g., [ASSOCIATE], [SHUTDOWN], [ABORT],

 * Reception of INIT, COOKIE ECHO, ABORT, SHUTDOWN, etc., control
 chunks, or

 * Some timeout events.

 The state diagram in the figures below illustrates state changes,
 together with the causing events and resulting actions. Note that
 some of the error conditions are not shown in the state diagram.
 Full descriptions of all special cases are found in the text.

 Note: Chunk names are given in all capital letters, while parameter
 names have the first letter capitalized, e.g., COOKIE ECHO chunk type
 vs. State Cookie parameter. If more than one event/message can occur
 that causes a state transition, it is labeled (A), (B).

 ----- -------- (from any state)
 / \ /receive ABORT [ABORT]
 receive INIT | | |-------------- or ----------
 ---------------------| v v delete TCB send ABORT
 generate State Cookie \ +---------+ delete TCB
 send INIT ACK ---| CLOSED |
 +---------+
 / \
 / \ [ASSOCIATE]
 | |-----------------
 | | create TCB
 | | send INIT
 receive valid | | start T1-init timer
 COOKIE ECHO | v
 (1) -----------------| +-----------+
 create TCB | |COOKIE-WAIT| (2)
 send COOKIE ACK | +-----------+
 | |
 | | receive INIT ACK
 | |-------------------
 | | send COOKIE ECHO
 | | stop T1-init timer
 | | start T1-cookie timer
 | v

Stewart, et al. Expires 9 August 2022 [Page 57]

Internet-Draft Stream Control Transmission Protocol February 2022

 | +-------------+
 | |COOKIE-ECHOED| (3)
 | +-------------+
 | |
 | | receive COOKIE ACK
 | |-------------------
 | | stop T1-cookie timer
 v v
 +---------------+
 | ESTABLISHED |
 +---------------+
 |
 |
 /--------+--------\
 [SHUTDOWN] / \
 -------------------| |
 check outstanding | |
 DATA chunks | |
 v |
 +----------------+ |
 |SHUTDOWN-PENDING| | receive SHUTDOWN
 +----------------+ |------------------
 | check outstanding
 | | DATA chunks
 No more outstanding | |
 -----------------------| |
 send SHUTDOWN | |
 start T2-shutdown timer| |
 v v
 +-------------+ +-----------------+
 (4) |SHUTDOWN-SENT| |SHUTDOWN-RECEIVED| (5,6)
 +-------------+ +-----------------+
 | \ |
 receive SHUTDOWN ACK | \ |
 -----------------------| \ |
 stop T2-shutdown timer | \ |
 send SHUTDOWN COMPLETE | \ |
 delete TCB | \ |
 | \ | No more outstanding
 | \ |--------------------
 | \ | send SHUTDOWN ACK
 receive SHUTDOWN -|- \ | start T2-shutdown timer
 --------------------/ | \----------\ |
 send SHUTDOWN ACK | \ |
 start T2-shutdown timer| \ |
 | \ |
 | | |
 | v v

Stewart, et al. Expires 9 August 2022 [Page 58]

Internet-Draft Stream Control Transmission Protocol February 2022

 | +-----------------+
 | |SHUTDOWN-ACK-SENT| (7)
 | +-----------------+
 | | (A)
 | |receive SHUTDOWN COMPLETE
 | |-------------------------
 | | stop T2-shutdown timer
 | | delete TCB
 | |
 | | (B)
 | | receive SHUTDOWN ACK
 | |-----------------------
 | | stop T2-shutdown timer
 | | send SHUTDOWN COMPLETE
 | | delete TCB
 | |
 \ +---------+ /
 \-->| CLOSED |<--/
 +---------+

 Figure 3: State Transition Diagram of SCTP

 The following applies:

 1) If the State Cookie in the received COOKIE ECHO chunk is invalid
 (i.e., failed to pass the integrity check), the receiver MUST
 silently discard the packet. Or, if the received State Cookie is
 expired (see Section 5.1.5), the receiver MUST send back an ERROR
 chunk. In either case, the receiver stays in the CLOSED state.

 2) If the T1-init timer expires, the endpoint MUST retransmit the
 INIT chunk and restart the T1-init timer without changing state.
 This MUST be repeated up to ’Max.Init.Retransmits’ times. After
 that, the endpoint MUST abort the initialization process and
 report the error to the SCTP user.

 3) If the T1-cookie timer expires, the endpoint MUST retransmit
 COOKIE ECHO chunk and restart the T1-cookie timer without
 changing state. This MUST be repeated up to
 ’Max.Init.Retransmits’ times. After that, the endpoint MUST
 abort the initialization process and report the error to the SCTP
 user.

 4) In the SHUTDOWN-SENT state, the endpoint MUST acknowledge any
 received DATA chunks without delay.

 5) In the SHUTDOWN-RECEIVED state, the endpoint MUST NOT accept any
 new send requests from its SCTP user.

Stewart, et al. Expires 9 August 2022 [Page 59]

Internet-Draft Stream Control Transmission Protocol February 2022

 6) In the SHUTDOWN-RECEIVED state, the endpoint MUST transmit or
 retransmit data and leave this state when all data in queue is
 transmitted.

 7) In the SHUTDOWN-ACK-SENT state, the endpoint MUST NOT accept any
 new send requests from its SCTP user.

 The CLOSED state is used to indicate that an association is not
 created (i.e., does not exist).

5. Association Initialization

 Before the first data transmission can take place from one SCTP
 endpoint ("A") to another SCTP endpoint ("Z"), the two endpoints MUST
 complete an initialization process in order to set up an SCTP
 association between them.

 The SCTP user at an endpoint can use the ASSOCIATE primitive to
 initialize an SCTP association to another SCTP endpoint.

 Implementation Note: From an SCTP user’s point of view, an
 association might be implicitly opened, without an ASSOCIATE
 primitive (see Section 11.1.2) being invoked, by the initiating
 endpoint’s sending of the first user data to the destination
 endpoint. The initiating SCTP will assume default values for all
 mandatory and optional parameters for the INIT/INIT ACK chunk.

 Once the association is established, unidirectional streams are open
 for data transfer on both ends (see Section 5.1.1).

5.1. Normal Establishment of an Association

 The initialization process consists of the following steps (assuming
 that SCTP endpoint "A" tries to set up an association with SCTP
 endpoint "Z" and "Z" accepts the new association):

 A) "A" first builds a TCB and sends an INIT chunk to "Z". In the
 INIT chunk, "A" MUST provide its Verification Tag (Tag_A) in the
 Initiate Tag field. Tag_A SHOULD be a random number in the range
 of 1 to 4294967295 (see Section 5.3.1 for Tag value selection).
 After sending the INIT chunk, "A" starts the T1-init timer and
 enters the COOKIE-WAIT state.

Stewart, et al. Expires 9 August 2022 [Page 60]

Internet-Draft Stream Control Transmission Protocol February 2022

 B) "Z" responds immediately with an INIT ACK chunk. The destination
 IP address of the INIT ACK chunk MUST be set to the source IP
 address of the INIT chunk to which this INIT ACK chunk is
 responding. In the response, besides filling in other
 parameters, "Z" MUST set the Verification Tag field to Tag_A, and
 also provide its own Verification Tag (Tag_Z) in the Initiate Tag
 field.

 Moreover, "Z" MUST generate and send along with the INIT ACK
 chunk a State Cookie. See Section 5.1.3 for State Cookie
 generation.

 After sending an INIT ACK chunk with the State Cookie parameter,
 "Z" MUST NOT allocate any resources or keep any states for the
 new association. Otherwise, "Z" will be vulnerable to resource
 attacks.

 C) Upon reception of the INIT ACK chunk from "Z", "A" stops the
 T1-init timer and leaves the COOKIE-WAIT state. "A" then sends
 the State Cookie received in the INIT ACK chunk in a COOKIE ECHO
 chunk, starts the T1-cookie timer, and enters the COOKIE-ECHOED
 state.

 The COOKIE ECHO chunk MAY be bundled with any pending outbound
 DATA chunks, but it MUST be the first chunk in the packet and
 until the COOKIE ACK chunk is returned the sender MUST NOT send
 any other packets to the peer.

 D) Upon reception of the COOKIE ECHO chunk, endpoint "Z" replies
 with a COOKIE ACK chunk after building a TCB and moving to the
 ESTABLISHED state. A COOKIE ACK chunk MAY be bundled with any
 pending DATA chunks (and/or SACK chunks), but the COOKIE ACK
 chunk MUST be the first chunk in the packet.

 Implementation Note: An implementation can choose to send the
 Communication Up notification to the SCTP user upon reception of
 a valid COOKIE ECHO chunk.

 E) Upon reception of the COOKIE ACK chunk, endpoint "A" moves from
 the COOKIE-ECHOED state to the ESTABLISHED state, stopping the
 T1-cookie timer. It can also notify its ULP about the successful
 establishment of the association with a Communication Up
 notification (see Section 11).

 An INIT or INIT ACK chunk MUST NOT be bundled with any other chunk.
 They MUST be the only chunks present in the SCTP packets that carry
 them.

Stewart, et al. Expires 9 August 2022 [Page 61]

Internet-Draft Stream Control Transmission Protocol February 2022

 An endpoint MUST send the INIT ACK chunk to the IP address from which
 it received the INIT chunk.

 T1-init timer and T1-cookie timer SHOULD follow the same rules given
 in Section 6.3. If the application provided multiple IP addresses of
 the peer, there SHOULD be a T1-init and T1-cookie timer for each
 address of the peer. Retransmissions of INIT chunks and COOKIE ECHO
 chunks SHOULD use all addresses of the peer similar to
 retransmissions of DATA chunks.

 If an endpoint receives an INIT, INIT ACK, or COOKIE ECHO chunk but
 decides not to establish the new association due to missing mandatory
 parameters in the received INIT or INIT ACK chunk, invalid parameter
 values, or lack of local resources, it SHOULD respond with an ABORT
 chunk. It SHOULD also specify the cause of abort, such as the type
 of the missing mandatory parameters, etc., by including the error
 cause parameters with the ABORT chunk. The Verification Tag field in
 the common header of the outbound SCTP packet containing the ABORT
 chunk MUST be set to the Initiate Tag value of the received INIT or
 INIT ACK chunk this ABORT chunk is responding to.

 Note that a COOKIE ECHO chunk that does not pass the integrity check
 is not considered an ’invalid mandatory parameter’ and requires
 special handling; see Section 5.1.5.

 After the reception of the first DATA chunk in an association the
 endpoint MUST immediately respond with a SACK chunk to acknowledge
 the DATA chunk. Subsequent acknowledgements SHOULD be done as
 described in Section 6.2.

 When the TCB is created, each endpoint MUST set its internal
 Cumulative TSN Ack Point to the value of its transmitted Initial TSN
 minus one.

 Implementation Note: The IP addresses and SCTP port are generally
 used as the key to find the TCB within an SCTP instance.

5.1.1. Handle Stream Parameters

 In the INIT and INIT ACK chunks, the sender of the chunk MUST
 indicate the number of outbound streams (OSs) it wishes to have in
 the association, as well as the maximum inbound streams (MISs) it
 will accept from the other endpoint.

 After receiving the stream configuration information from the other
 side, each endpoint MUST perform the following check: If the peer’s
 MIS is less than the endpoint’s OS, meaning that the peer is
 incapable of supporting all the outbound streams the endpoint wants

Stewart, et al. Expires 9 August 2022 [Page 62]

Internet-Draft Stream Control Transmission Protocol February 2022

 to configure, the endpoint MUST use MIS outbound streams and MAY
 report any shortage to the upper layer. The upper layer can then
 choose to abort the association if the resource shortage is
 unacceptable.

 After the association is initialized, the valid outbound stream
 identifier range for either endpoint MUST be 0 to min(local OS,
 remote MIS) - 1.

5.1.2. Handle Address Parameters

 During the association initialization, an endpoint uses the following
 rules to discover and collect the destination transport address(es)
 of its peer.

 A) If there are no address parameters present in the received INIT
 or INIT ACK chunk, the endpoint MUST take the source IP address
 from which the chunk arrives and record it, in combination with
 the SCTP source port number, as the only destination transport
 address for this peer.

 B) If there is a Host Name Address parameter present in the received
 INIT or INIT ACK chunk, the endpoint MUST immediately send an
 ABORT chunk and MAY include an "Unresolvable Address" error cause
 to its peer. The ABORT chunk SHOULD be sent to the source IP
 address from which the last peer packet was received.

 C) If there are only IPv4/IPv6 addresses present in the received
 INIT or INIT ACK chunk, the receiver MUST derive and record all
 the transport addresses from the received chunk AND the source IP
 address that sent the INIT or INIT ACK chunk. The transport
 addresses are derived by the combination of SCTP source port
 (from the common header) and the IP Address parameter(s) carried
 in the INIT or INIT ACK chunk and the source IP address of the IP
 datagram. The receiver SHOULD use only these transport addresses
 as destination transport addresses when sending subsequent
 packets to its peer.

 D) An INIT or INIT ACK chunk MUST be treated as belonging to an
 already established association (or one in the process of being
 established) if the use of any of the valid address parameters
 contained within the chunk would identify an existing TCB.

 Implementation Note: In some cases (e.g., when the implementation
 does not control the source IP address that is used for
 transmitting), an endpoint might need to include in its INIT or INIT
 ACK chunk all possible IP addresses from which packets to the peer
 could be transmitted.

Stewart, et al. Expires 9 August 2022 [Page 63]

Internet-Draft Stream Control Transmission Protocol February 2022

 After all transport addresses are derived from the INIT or INIT ACK
 chunk using the above rules, the endpoint selects one of the
 transport addresses as the initial primary path.

 The packet containing the INIT ACK chunk MUST be sent to the source
 address of the packet containing the INIT chunk.

 The sender of INIT chunks MAY include a ’Supported Address Types’
 parameter in the INIT chunk to indicate what types of addresses are
 acceptable.

 Implementation Note: In the case that the receiver of an INIT ACK
 chunk fails to resolve the address parameter due to an unsupported
 type, it can abort the initiation process and then attempt a
 reinitiation by using a ’Supported Address Types’ parameter in the
 new INIT chunk to indicate what types of address it prefers.

 If an SCTP endpoint that only supports either IPv4 or IPv6 receives
 IPv4 and IPv6 addresses in an INIT or INIT ACK chunk from its peer,
 it MUST use all the addresses belonging to the supported address
 family. The other addresses MAY be ignored. The endpoint SHOULD NOT
 respond with any kind of error indication.

 If an SCTP endpoint lists in the ’Supported Address Types’ parameter
 either IPv4 or IPv6, but uses the other family for sending the packet
 containing the INIT chunk, or if it also lists addresses of the other
 family in the INIT chunk, then the address family that is not listed
 in the ’Supported Address Types’ parameter SHOULD also be considered
 as supported by the receiver of the INIT chunk. The receiver of the
 INIT chunk SHOULD NOT respond with any kind of error indication.

5.1.3. Generating State Cookie

 When sending an INIT ACK chunk as a response to an INIT chunk, the
 sender of INIT ACK chunk creates a State Cookie and sends it in the
 State Cookie parameter of the INIT ACK chunk. Inside this State
 Cookie, the sender MUST include a MAC (see [RFC2104] for an example)
 to provide integrity protection on the State Cookie. The State
 Cookie SHOULD also contain a timestamp on when the State Cookie is
 created, and the lifespan of the State Cookie, along with all the
 information necessary for it to establish the association including
 the port numbers and the verification tags.

 The method used to generate the MAC is strictly a private matter for
 the receiver of the INIT chunk. The use of a MAC is mandatory to
 prevent denial-of-service attacks. MAC algorithms can have different
 performance depending on the platform. Choosing a high performance
 MAC algorithm increases the resistance against cookie flooding

Stewart, et al. Expires 9 August 2022 [Page 64]

Internet-Draft Stream Control Transmission Protocol February 2022

 attacks. A MAC with acceptable security properties SHOULD be used.
 The secret key SHOULD be random ([RFC4086] provides some information
 on randomness guidelines). The secret keys need to have an
 appropriate size. The secret key SHOULD be changed reasonably
 frequently (e.g., hourly), and the timestamp in the State Cookie MAY
 be used to determine which key is used to verify the MAC.

 If the State Cookie is not encrypted, it MUST NOT contain information
 which is not being envisioned to be shared.

 An implementation SHOULD make the cookie as small as possible to
 ensure interoperability.

5.1.4. State Cookie Processing

 When an endpoint (in the COOKIE-WAIT state) receives an INIT ACK
 chunk with a State Cookie parameter, it MUST immediately send a
 COOKIE ECHO chunk to its peer with the received State Cookie. The
 sender MAY also add any pending DATA chunks to the packet after the
 COOKIE ECHO chunk.

 The endpoint MUST also start the T1-cookie timer after sending the
 COOKIE ECHO chunk. If the timer expires, the endpoint MUST
 retransmit the COOKIE ECHO chunk and restart the T1-cookie timer.
 This is repeated until either a COOKIE ACK chunk is received or
 ’Max.Init.Retransmits’ (see Section 16) is reached causing the peer
 endpoint to be marked unreachable (and thus the association enters
 the CLOSED state).

5.1.5. State Cookie Authentication

 When an endpoint receives a COOKIE ECHO chunk from another endpoint
 with which it has no association, it takes the following actions:

 1) Compute a MAC using the information carried in the State Cookie
 and the secret key. The timestamp in the State Cookie MAY be
 used to determine which secret key to use. If secrets are kept
 only for a limited amount of time and the secret key to use is
 not available anymore, the packet containing the COOKIE ECHO
 chunk MUST be silently discarded. [RFC2104] can be used as a
 guideline for generating the MAC,

 2) Authenticate the State Cookie as one that it previously generated
 by comparing the computed MAC against the one carried in the
 State Cookie. If this comparison fails, the SCTP packet,
 including the COOKIE ECHO chunk and any DATA chunks, MUST be
 silently discarded,

Stewart, et al. Expires 9 August 2022 [Page 65]

Internet-Draft Stream Control Transmission Protocol February 2022

 3) Compare the port numbers and the Verification Tag contained
 within the COOKIE ECHO chunk to the actual port numbers and the
 Verification Tag within the SCTP common header of the received
 packet. If these values do not match, the packet MUST be
 silently discarded.

 4) Compare the creation timestamp in the State Cookie to the current
 local time. If the elapsed time is longer than the lifespan
 carried in the State Cookie, then the packet, including the
 COOKIE ECHO chunk and any attached DATA chunks, SHOULD be
 discarded, and the endpoint MUST transmit an ERROR chunk with a
 "Stale Cookie" error cause to the peer endpoint.

 5) If the State Cookie is valid, create an association to the sender
 of the COOKIE ECHO chunk with the information in the State Cookie
 carried in the COOKIE ECHO chunk and enter the ESTABLISHED state.

 6) Send a COOKIE ACK chunk to the peer acknowledging receipt of the
 COOKIE ECHO chunk. The COOKIE ACK chunk MAY be bundled with an
 outbound DATA chunk or SACK chunk; however, the COOKIE ACK chunk
 MUST be the first chunk in the SCTP packet.

 7) Immediately acknowledge any DATA chunk bundled with the COOKIE
 ECHO chunk with a SACK chunk (subsequent DATA chunk
 acknowledgement SHOULD follow the rules defined in Section 6.2).
 As mentioned in step 6, if the SACK chunk is bundled with the
 COOKIE ACK chunk, the COOKIE ACK chunk MUST appear first in the
 SCTP packet.

 If a COOKIE ECHO chunk is received from an endpoint with which the
 receiver of the COOKIE ECHO chunk has an existing association, the
 procedures in Section 5.2 SHOULD be followed.

5.1.6. An Example of Normal Association Establishment

 In the following example, "A" initiates the association and then
 sends a user message to "Z", then "Z" sends two user messages to "A"
 later (assuming no bundling or fragmentation occurs):

Stewart, et al. Expires 9 August 2022 [Page 66]

Internet-Draft Stream Control Transmission Protocol February 2022

 Endpoint A Endpoint Z
 {app sets association with Z}
 (build TCB)
 INIT [I-Tag=Tag_A
 & other info] ------\
 (Start T1-init timer) \
 (Enter COOKIE-WAIT state) \---> (compose Cookie_Z)
 /-- INIT ACK [Veri Tag=Tag_A,
 / I-Tag=Tag_Z,
 (Cancel T1-init timer) <------/ Cookie_Z, & other info]

 COOKIE ECHO [Cookie_Z] ------\
 (Start T1-cookie timer) \
 (Enter COOKIE-ECHOED state) \---> (build TCB, enter ESTABLISHED
 state)
 /---- COOKIE ACK
 /
 (Cancel T1-cookie timer, <---/
 enter ESTABLISHED state)
 {app sends 1st user data; strm 0}
 DATA [TSN=init TSN_A
 Strm=0,Seq=0 & user data]--\
 (Start T3-rtx timer) \
 \->
 /----- SACK [TSN Ack=init TSN_A,
 Block=0]
 (Cancel T3-rtx timer) <------/
 ...
 {app sends 2 messages;strm 0}
 /---- DATA
 / [TSN=init TSN_Z,
 <--/ Strm=0,Seq=0 & user data 1]
 SACK [TSN Ack=init TSN_Z, /---- DATA
 Block=0] --------\ / [TSN=init TSN_Z +1,
 \/ Strm=0,Seq=1 & user data 2]
 <------/\
 \
 \------>

 Figure 4: A Setup Example

 If the T1-init timer expires at "A" after the INIT or COOKIE ECHO
 chunks are sent, the same INIT or COOKIE ECHO chunk with the same
 Initiate Tag (i.e., Tag_A) or State Cookie is retransmitted and the
 timer restarted. This is repeated ’Max.Init.Retransmits’ times
 before "A" considers "Z" unreachable and reports the failure to its
 upper layer (and thus the association enters the CLOSED state).

Stewart, et al. Expires 9 August 2022 [Page 67]

Internet-Draft Stream Control Transmission Protocol February 2022

 When retransmitting the INIT chunk, the endpoint MUST follow the
 rules defined in Section 6.3 to determine the proper timer value.

5.2. Handle Duplicate or Unexpected INIT, INIT ACK, COOKIE ECHO, and
 COOKIE ACK Chunks

 During the life time of an association (in one of the possible
 states), an endpoint can receive from its peer endpoint one of the
 setup chunks (INIT, INIT ACK, COOKIE ECHO, and COOKIE ACK). The
 receiver treats such a setup chunk as a duplicate and process it as
 described in this section.

 Note: An endpoint will not receive the chunk unless the chunk was
 sent to an SCTP transport address and is from an SCTP transport
 address associated with this endpoint. Therefore, the endpoint
 processes such a chunk as part of its current association.

 The following scenarios can cause duplicated or unexpected chunks:

 A) The peer has crashed without being detected, restarted itself,
 and sent a new INIT chunk trying to restore the association,

 B) Both sides are trying to initialize the association at about the
 same time,

 C) The chunk is from a stale packet that was used to establish the
 present association or a past association that is no longer in
 existence,

 D) The chunk is a false packet generated by an attacker, or

 E) The peer never received the COOKIE ACK chunk and is
 retransmitting its COOKIE ECHO chunk.

 The rules in the following sections are applied in order to identify
 and correctly handle these cases.

5.2.1. INIT Chunk Received in COOKIE-WAIT or COOKIE-ECHOED State (Item
 B)

 This usually indicates an initialization collision, i.e., each
 endpoint is attempting, at about the same time, to establish an
 association with the other endpoint.

 Upon receipt of an INIT chunk in the COOKIE-WAIT state, an endpoint
 MUST respond with an INIT ACK chunk using the same parameters it sent
 in its original INIT chunk (including its Initiate Tag, unchanged).
 When responding, the following rules MUST be applied:

Stewart, et al. Expires 9 August 2022 [Page 68]

Internet-Draft Stream Control Transmission Protocol February 2022

 1) The packet containing the INIT ACK chunk MUST only be sent to an
 address passed by the upper layer in the request to initialize
 the association.

 2) The packet containing the INIT ACK chunk MUST only be sent to an
 address reported in the incoming INIT chunk.

 3) The packet containing the INIT ACK chunk SHOULD be sent to the
 source address of the received packet containing the INIT chunk.

 Upon receipt of an INIT chunk in the COOKIE-ECHOED state, an endpoint
 MUST respond with an INIT ACK chunk using the same parameters it sent
 in its original INIT chunk (including its Initiate Tag, unchanged),
 provided that no NEW address has been added to the forming
 association. If the INIT chunk indicates that a new address has been
 added to the association, then the entire INIT chunk MUST be
 discarded, and the state of the existing association SHOULD NOT be
 changed. An ABORT chunk SHOULD be sent in response that MAY include
 the error ’Restart of an association with new addresses’. The error
 SHOULD list the addresses that were added to the restarting
 association.

 When responding in either state (COOKIE-WAIT or COOKIE-ECHOED) with
 an INIT ACK chunk, the original parameters are combined with those
 from the newly received INIT chunk. The endpoint MUST also generate
 a State Cookie with the INIT ACK chunk. The endpoint uses the
 parameters sent in its INIT chunk to calculate the State Cookie.

 After that, the endpoint MUST NOT change its state, the T1-init timer
 MUST be left running, and the corresponding TCB MUST NOT be
 destroyed. The normal procedures for handling State Cookies when a
 TCB exists will resolve the duplicate INIT chunks to a single
 association.

 For an endpoint that is in the COOKIE-ECHOED state, it MUST populate
 its Tie-Tags within both the association TCB and inside the State
 Cookie (see Section 5.2.2 for a description of the Tie-Tags).

5.2.2. Unexpected INIT Chunk in States Other than CLOSED, COOKIE-
 ECHOED, COOKIE-WAIT, and SHUTDOWN-ACK-SENT

 Unless otherwise stated, upon receipt of an unexpected INIT chunk for
 this association, the endpoint MUST generate an INIT ACK chunk with a
 State Cookie. Before responding, the endpoint MUST check to see if
 the unexpected INIT chunk adds new addresses to the association. If
 new addresses are added to the association, the endpoint MUST respond
 with an ABORT chunk, copying the ’Initiate Tag’ of the unexpected
 INIT chunk into the ’Verification Tag’ of the outbound packet

Stewart, et al. Expires 9 August 2022 [Page 69]

Internet-Draft Stream Control Transmission Protocol February 2022

 carrying the ABORT chunk. In the ABORT chunk, the error cause MAY be
 set to ’restart of an association with new addresses’. The error
 SHOULD list the addresses that were added to the restarting
 association. If no new addresses are added, when responding to the
 INIT chunk in the outbound INIT ACK chunk, the endpoint MUST copy its
 current Tie-Tags to a reserved place within the State Cookie and the
 association’s TCB. We refer to these locations inside the cookie as
 the Peer’s-Tie-Tag and the Local-Tie-Tag. We will refer to the copy
 within an association’s TCB as the Local Tag and Peer’s Tag. The
 outbound SCTP packet containing this INIT ACK chunk MUST carry a
 Verification Tag value equal to the Initiate Tag found in the
 unexpected INIT chunk. And the INIT ACK chunk MUST contain a new
 Initiate Tag (randomly generated; see Section 5.3.1). Other
 parameters for the endpoint SHOULD be copied from the existing
 parameters of the association (e.g., number of outbound streams) into
 the INIT ACK chunk and cookie.

 After sending the INIT ACK or ABORT chunk, the endpoint MUST take no
 further actions; i.e., the existing association, including its
 current state, and the corresponding TCB MUST NOT be changed.

 Only when a TCB exists and the association is not in a COOKIE-WAIT or
 SHUTDOWN-ACK-SENT state are the Tie-Tags populated with a random
 value other than 0. For a normal association INIT chunk (i.e., the
 endpoint is in the CLOSED state), the Tie-Tags MUST be set to 0
 (indicating that no previous TCB existed).

5.2.3. Unexpected INIT ACK Chunk

 If an INIT ACK chunk is received by an endpoint in any state other
 than the COOKIE-WAIT or CLOSED state, the endpoint SHOULD discard the
 INIT ACK chunk. An unexpected INIT ACK chunk usually indicates the
 processing of an old or duplicated INIT chunk.

5.2.4. Handle a COOKIE ECHO Chunk when a TCB Exists

 When a COOKIE ECHO chunk is received by an endpoint in any state for
 an existing association (i.e., not in the CLOSED state) the following
 rules are applied:

 1) Compute a MAC as described in step 1 of Section 5.1.5,

 2) Authenticate the State Cookie as described in step 2 of
 Section 5.1.5 (this is case C or D above).

 3) Compare the timestamp in the State Cookie to the current time.
 If the State Cookie is older than the lifespan carried in the
 State Cookie and the Verification Tags contained in the State

Stewart, et al. Expires 9 August 2022 [Page 70]

Internet-Draft Stream Control Transmission Protocol February 2022

 Cookie do not match the current association’s Verification Tags,
 the packet, including the COOKIE ECHO chunk and any DATA chunks,
 SHOULD be discarded. The endpoint also MUST transmit an ERROR
 chunk with a "Stale Cookie" error cause to the peer endpoint
 (this is case C or D in Section 5.2).

 If both Verification Tags in the State Cookie match the
 Verification Tags of the current association, consider the State
 Cookie valid (this is case E in Section 5.2) even if the lifespan
 is exceeded.

 4) If the State Cookie proves to be valid, unpack the TCB into a
 temporary TCB.

 5) Refer to Table 12 to determine the correct action to be taken.

 +-----------+------------+---------------+----------------+--------+
 | Local Tag | Peer’s Tag | Local-Tie-Tag | Peer’s-Tie-Tag | Action |
 +-----------+------------+---------------+----------------+--------+
 | X | X | M | M | (A) |
 +-----------+------------+---------------+----------------+--------+
 | M | X | A | A | (B) |
 +-----------+------------+---------------+----------------+--------+
 | M | 0 | A | A | (B) |
 +-----------+------------+---------------+----------------+--------+
 | X | M | 0 | 0 | (C) |
 +-----------+------------+---------------+----------------+--------+
 | M | M | A | A | (D) |
 +-----------+------------+---------------+----------------+--------+

 Table 12: Handling of a COOKIE ECHO Chunk when a TCB Exists

 Legend:

 X - Tag does not match the existing TCB.
 M - Tag matches the existing TCB.
 0 - Tag unknown (Peer’s Tag not known yet / No tie-tag in cookie).
 A - All cases, i.e., M, X, or 0.

 For any case not shown in Table 12, the cookie SHOULD be silently
 discarded.

 Action

 A) In this case, the peer might have restarted. When the endpoint
 recognizes this potential ’restart’, the existing session is
 treated the same as if it received an ABORT chunk followed by a
 new COOKIE ECHO chunk with the following exceptions:

Stewart, et al. Expires 9 August 2022 [Page 71]

Internet-Draft Stream Control Transmission Protocol February 2022

 * Any SCTP DATA chunks MAY be retained (this is an
 implementation-specific option).

 * A notification of RESTART SHOULD be sent to the ULP instead of
 a "COMMUNICATION LOST" notification.

 All the congestion control parameters (e.g., cwnd, ssthresh)
 related to this peer MUST be reset to their initial values (see
 Section 6.2.1).

 After this, the endpoint enters the ESTABLISHED state.

 If the endpoint is in the SHUTDOWN-ACK-SENT state and recognizes
 that the peer has restarted (Action A), it MUST NOT set up a new
 association but instead resend the SHUTDOWN ACK chunk and send an
 ERROR chunk with a "Cookie Received While Shutting Down" error
 cause to its peer.

 B) In this case, both sides might be attempting to start an
 association at about the same time, but the peer endpoint sent
 its INIT chunk after responding to the local endpoint’s INIT
 chunk. Thus, it might have picked a new Verification Tag, not
 being aware of the previous tag it had sent this endpoint. The
 endpoint SHOULD stay in or enter the ESTABLISHED state, but it
 MUST update its peer’s Verification Tag from the State Cookie,
 stop any T1-init or T1-cookie timers that might be running, and
 send a COOKIE ACK chunk.

 C) In this case, the local endpoint’s cookie has arrived late.
 Before it arrived, the local endpoint sent an INIT chunk and
 received an INIT ACK chunk and finally sent a COOKIE ECHO chunk
 with the peer’s same tag but a new tag of its own. The cookie
 SHOULD be silently discarded. The endpoint SHOULD NOT change
 states and SHOULD leave any timers running.

 D) When both local and remote tags match, the endpoint SHOULD enter
 the ESTABLISHED state, if it is in the COOKIE-ECHOED state. It
 SHOULD stop any T1-cookie timer that is running and send a COOKIE
 ACK chunk.

 Note: The "peer’s Verification Tag" is the tag received in the
 Initiate Tag field of the INIT or INIT ACK chunk.

Stewart, et al. Expires 9 August 2022 [Page 72]

Internet-Draft Stream Control Transmission Protocol February 2022

5.2.4.1. An Example of a Association Restart

 In the following example, "A" initiates the association after a
 restart has occurred. Endpoint "Z" had no knowledge of the restart
 until the exchange (i.e., Heartbeats had not yet detected the failure
 of "A") (assuming no bundling or fragmentation occurs):

 Endpoint A Endpoint Z
 <-------------- Association is established---------------------->
 Tag=Tag_A Tag=Tag_Z
 <--->
 {A crashes and restarts}
 {app sets up a association with Z}
 (build TCB)
 INIT [I-Tag=Tag_A’
 & other info] --------\
 (Start T1-init timer) \
 (Enter COOKIE-WAIT state) \---> (find an existing TCB,
 populate TieTags if needed,
 compose Cookie_Z with Tie-Tags
 and other info)
 /--- INIT ACK [Veri Tag=Tag_A’,
 / I-Tag=Tag_Z’,
 (Cancel T1-init timer) <------/ Cookie_Z]
 (leave original TCB in place)
 COOKIE ECHO [Veri=Tag_Z’,
 Cookie_Z]-------\
 (Start T1-init timer) \
 (Enter COOKIE-ECHOED state) \---> (Find existing association,
 Tie-Tags in Cookie_Z match
 Tie-Tags in TCB,
 Tags do not match, i.e.,
 case X X M M above,
 Announce Restart to ULP
 and reset association).
 /---- COOKIE ACK
 (Cancel T1-init timer, <------/
 Enter ESTABLISHED state)
 {app sends 1st user data; strm 0}
 DATA [TSN=initial TSN_A
 Strm=0,Seq=0 & user data]--\
 (Start T3-rtx timer) \
 \->
 /--- SACK [TSN Ack=init TSN_A,Block=0]
 (Cancel T3-rtx timer) <------/

 Figure 5: A Restart Example

Stewart, et al. Expires 9 August 2022 [Page 73]

Internet-Draft Stream Control Transmission Protocol February 2022

5.2.5. Handle Duplicate COOKIE ACK Chunk

 At any state other than COOKIE-ECHOED, an endpoint SHOULD silently
 discard a received COOKIE ACK chunk.

5.2.6. Handle Stale Cookie Error

 Receipt of an ERROR chunk with a "Stale Cookie" error cause indicates
 one of a number of possible events:

 A) The association failed to completely setup before the State
 Cookie issued by the sender was processed.

 B) An old State Cookie was processed after setup completed.

 C) An old State Cookie is received from someone that the receiver is
 not interested in having an association with and the ABORT chunk
 was lost.

 When processing an ERROR chunk with a "Stale Cookie" error cause an
 endpoint SHOULD first examine if an association is in the process of
 being set up, i.e., the association is in the COOKIE-ECHOED state.
 In all cases, if the association is not in the COOKIE-ECHOED state,
 the ERROR chunk SHOULD be silently discarded.

 If the association is in the COOKIE-ECHOED state, the endpoint MAY
 elect one of the following three alternatives.

 1) Send a new INIT chunk to the endpoint to generate a new State
 Cookie and reattempt the setup procedure.

 2) Discard the TCB and report to the upper layer the inability to
 set up the association.

 3) Send a new INIT chunk to the endpoint, adding a Cookie
 Preservative parameter requesting an extension to the life time
 of the State Cookie. When calculating the time extension, an
 implementation SHOULD use the RTT information measured based on
 the previous COOKIE ECHO / ERROR chunk exchange, and SHOULD add
 no more than 1 second beyond the measured RTT, due to long State
 Cookie life times making the endpoint more subject to a replay
 attack.

5.3. Other Initialization Issues

Stewart, et al. Expires 9 August 2022 [Page 74]

Internet-Draft Stream Control Transmission Protocol February 2022

5.3.1. Selection of Tag Value

 Initiate Tag values SHOULD be selected from the range of 1 to 2^32 -
 1. It is very important that the Initiate Tag value be randomized to
 help protect against "man in the middle" and "sequence number"
 attacks. The methods described in [RFC4086] can be used for the
 Initiate Tag randomization. Careful selection of Initiate Tags is
 also necessary to prevent old duplicate packets from previous
 associations being mistakenly processed as belonging to the current
 association.

 Moreover, the Verification Tag value used by either endpoint in a
 given association MUST NOT change during the life time of an
 association. A new Verification Tag value MUST be used each time the
 endpoint tears down and then reestablishes an association to the same
 peer.

5.4. Path Verification

 During association establishment, the two peers exchange a list of
 addresses. In the predominant case, these lists accurately represent
 the addresses owned by each peer. However, a misbehaving peer might
 supply addresses that it does not own. To prevent this, the
 following rules are applied to all addresses of the new association:

 1) Any addresses passed to the sender of the INIT chunk by its upper
 layer in the request to initialize an association are
 automatically considered to be CONFIRMED.

 2) For the receiver of the COOKIE ECHO chunk, the only CONFIRMED
 address is the address to which the packet containing the INIT
 ACK chunk was sent.

 3) All other addresses not covered by rules 1 and 2 are considered
 UNCONFIRMED and are subject to probing for verification.

 To probe an address for verification, an endpoint will send HEARTBEAT
 chunks including a 64-bit random nonce and a path indicator (to
 identify the address that the HEARTBEAT chunk is sent to) within the
 Heartbeat Info parameter.

 Upon receipt of the HEARTBEAT ACK chunk, a verification is made that
 the nonce included in the Heartbeat Info parameter is the one sent to
 the address indicated inside the Heartbeat Info parameter. When this
 match occurs, the address that the original HEARTBEAT was sent to is
 now considered CONFIRMED and available for normal data transfer.

Stewart, et al. Expires 9 August 2022 [Page 75]

Internet-Draft Stream Control Transmission Protocol February 2022

 These probing procedures are started when an association moves to the
 ESTABLISHED state and are ended when all paths are confirmed.

 In each RTO, a probe MAY be sent on an active UNCONFIRMED path in an
 attempt to move it to the CONFIRMED state. If during this probing
 the path becomes inactive, this rate is lowered to the normal
 HEARTBEAT rate. At the expiration of the RTO timer, the error
 counter of any path that was probed but not CONFIRMED is incremented
 by one and subjected to path failure detection, as defined in
 Section 8.2. When probing UNCONFIRMED addresses, however, the
 association overall error count is not incremented.

 The number of packets containing HEARTBEAT chunks sent at each RTO
 SHOULD be limited by the ’HB.Max.Burst’ parameter. It is an
 implementation decision as to how to distribute packets containing
 HEARTBEAT chunks to the peer’s addresses for path verification.

 Whenever a path is confirmed, an indication MAY be given to the upper
 layer.

 An endpoint MUST NOT send any chunks to an UNCONFIRMED address, with
 the following exceptions:

 * A HEARTBEAT chunk including a nonce MAY be sent to an UNCONFIRMED
 address.

 * A HEARTBEAT ACK chunk MAY be sent to an UNCONFIRMED address.

 * A COOKIE ACK chunk MAY be sent to an UNCONFIRMED address, but it
 MUST be bundled with a HEARTBEAT chunk including a nonce. An
 implementation that does not support bundling MUST NOT send a
 COOKIE ACK chunk to an UNCONFIRMED address.

 * A COOKIE ECHO chunk MAY be sent to an UNCONFIRMED address, but it
 MUST be bundled with a HEARTBEAT chunk including a nonce, and the
 size of the SCTP packet MUST NOT exceed the PMTU. If the
 implementation does not support bundling or if the bundled COOKIE
 ECHO chunk plus HEARTBEAT chunk (including nonce) would result in
 an SCTP packet larger than the PMTU, then the implementation MUST
 NOT send a COOKIE ECHO chunk to an UNCONFIRMED address.

6. User Data Transfer

 Data transmission MUST only happen in the ESTABLISHED, SHUTDOWN-
 PENDING, and SHUTDOWN-RECEIVED states. The only exception to this is
 that DATA chunks are allowed to be bundled with an outbound COOKIE
 ECHO chunk when in the COOKIE-WAIT state.

Stewart, et al. Expires 9 August 2022 [Page 76]

Internet-Draft Stream Control Transmission Protocol February 2022

 DATA chunks MUST only be received according to the rules below in
 ESTABLISHED, SHUTDOWN-PENDING, and SHUTDOWN-SENT states. A DATA
 chunk received in CLOSED is out of the blue and SHOULD be handled per
 Section 8.4. A DATA chunk received in any other state SHOULD be
 discarded.

 A SACK chunk MUST be processed in ESTABLISHED, SHUTDOWN-PENDING, and
 SHUTDOWN-RECEIVED states. An incoming SACK chunk MAY be processed in
 COOKIE-ECHOED. A SACK chunk in the CLOSED state is out of the blue
 and SHOULD be processed according to the rules in Section 8.4. A
 SACK chunk received in any other state SHOULD be discarded.

 For transmission efficiency, SCTP defines mechanisms for bundling of
 small user messages and fragmentation of large user messages. The
 following diagram depicts the flow of user messages through SCTP.

 In this section, the term "data sender" refers to the endpoint that
 transmits a DATA chunk and the term "data receiver" refers to the
 endpoint that receives a DATA chunk. A data receiver will transmit
 SACK chunks.

 +-------------------------+
 | User Messages |
 +-------------------------+
 SCTP user ^ |
 ==================|==|=======================================
 | v (1)
 +------------------+ +---------------------+
 | SCTP DATA Chunks | | SCTP Control Chunks |
 +------------------+ +---------------------+
 ^ | ^ |
 | v (2) | v (2)
 +--------------------------+
 | SCTP packets |
 +--------------------------+
 SCTP ^ |
 ===========================|==|===========================
 | v
 Connectionless Packet Transfer Service (e.g., IP)

 Figure 6: Illustration of User Data Transfer

 The following applies:

Stewart, et al. Expires 9 August 2022 [Page 77]

Internet-Draft Stream Control Transmission Protocol February 2022

 1) When converting user messages into DATA chunks, an endpoint MUST
 fragment large user messages into multiple DATA chunks. The size
 of each DATA chunk SHOULD be smaller than or equal to the
 Association Maximum DATA Chunk Size (AMDCS). The data receiver
 will normally reassemble the fragmented message from DATA chunks
 before delivery to the user (see Section 6.9 for details).

 2) Multiple DATA and control chunks MAY be bundled by the sender
 into a single SCTP packet for transmission, as long as the final
 size of the SCTP packet does not exceed the current PMTU. The
 receiver will unbundle the packet back into the original chunks.
 Control chunks MUST come before DATA chunks in the packet.

 The fragmentation and bundling mechanisms, as detailed in Section 6.9
 and Section 6.10, are OPTIONAL to implement by the data sender, but
 they MUST be implemented by the data receiver, i.e., an endpoint MUST
 properly receive and process bundled or fragmented data.

6.1. Transmission of DATA Chunks

 This section specifies the rules for sending DATA chunks. In
 particular, it defines zero window probing, which is required to
 avoid the indefinite stalling of an association in case of a loss of
 packets containing SACK chunks performing window updates.

 This document is specified as if there is a single retransmission
 timer per destination transport address, but implementations MAY have
 a retransmission timer for each DATA chunk.

 The following general rules MUST be applied by the data sender for
 transmission and/or retransmission of outbound DATA chunks:

 A) At any given time, the data sender MUST NOT transmit new data to
 any destination transport address if its peer’s rwnd indicates
 that the peer has no buffer space (i.e., rwnd is smaller than the
 size of the next DATA chunk; see Section 6.2.1), except for zero
 window probes.

 A zero window probe is a DATA chunk sent when the receiver has no
 buffer space. This rule allows the sender to probe for a change
 in rwnd that the sender missed due to the SACK chunks having been
 lost in transit from the data receiver to the data sender. A
 zero window probe MUST only be sent when the cwnd allows (see
 Rule B below). A zero window probe SHOULD only be sent when all
 outstanding DATA chunks have been cumulatively acknowledged and
 no DATA chunks are in flight. Senders MUST support zero window
 probing.

Stewart, et al. Expires 9 August 2022 [Page 78]

Internet-Draft Stream Control Transmission Protocol February 2022

 If the sender continues to receive SACK chunks from the peer
 while doing zero window probing, the unacknowledged window probes
 SHOULD NOT increment the error counter for the association or any
 destination transport address. This is because the receiver
 could keep its window closed for an indefinite time. Section 6.2
 describes the receiver behavior when it advertises a zero window.
 The sender SHOULD send the first zero window probe after 1 RTO
 when it detects that the receiver has closed its window and
 SHOULD increase the probe interval exponentially afterwards.
 Also note that the cwnd SHOULD be adjusted according to
 Section 7.2.1. Zero window probing does not affect the
 calculation of cwnd.

 The sender MUST also have an algorithm for sending new DATA
 chunks to avoid silly window syndrome (SWS) as described in
 [RFC1122]. The algorithm can be similar to the one described in
 Section 4.2.3.4 of [RFC1122].

 B) At any given time, the sender MUST NOT transmit new data to a
 given transport address if it has cwnd + (PMDCS - 1) or more
 bytes of data outstanding to that transport address. If data is
 available, the sender SHOULD exceed cwnd by up to (PMDCS - 1)
 bytes on a new data transmission if the flightsize does not
 currently reach cwnd. The breach of cwnd MUST constitute one
 packet only.

 C) When the time comes for the sender to transmit, before sending
 new DATA chunks, the sender MUST first transmit any DATA chunks
 that are marked for retransmission (limited by the current cwnd).

 D) When the time comes for the sender to transmit new DATA chunks,
 the protocol parameter ’Max.Burst’ SHOULD be used to limit the
 number of packets sent. The limit MAY be applied by adjusting
 cwnd temporarily, as follows:

 if ((flightsize + Max.Burst * PMDCS) < cwnd)
 cwnd = flightsize + Max.Burst * PMDCS;

 Or, it MAY be applied by strictly limiting the number of packets
 emitted by the output routine. When calculating the number of
 packets to transmit, and particularly when using the formula
 above, cwnd SHOULD NOT be changed permanently.

 E) Then, the sender can send as many new DATA chunks as rule A and
 rule B allow.

Stewart, et al. Expires 9 August 2022 [Page 79]

Internet-Draft Stream Control Transmission Protocol February 2022

 Multiple DATA chunks committed for transmission MAY be bundled in a
 single packet. Furthermore, DATA chunks being retransmitted MAY be
 bundled with new DATA chunks, as long as the resulting SCTP packet
 size does not exceed the PMTU. A ULP can request that no bundling is
 performed, but this only turns off any delays that an SCTP
 implementation might be using to increase bundling efficiency. It
 does not in itself stop all bundling from occurring (i.e., in case of
 congestion or retransmission).

 Before an endpoint transmits a DATA chunk, if any received DATA
 chunks have not been acknowledged (e.g., due to delayed ack), the
 sender SHOULD create a SACK chunk and bundle it with the outbound
 DATA chunk, as long as the size of the final SCTP packet does not
 exceed the current PMTU. See Section 6.2.

 When the window is full (i.e., transmission is disallowed by rule A
 and/or rule B), the sender MAY still accept send requests from its
 upper layer, but MUST transmit no more DATA chunks until some or all
 of the outstanding DATA chunks are acknowledged and transmission is
 allowed by rule A and rule B again.

 Whenever a transmission or retransmission is made to any address, if
 the T3-rtx timer of that address is not currently running, the sender
 MUST start that timer. If the timer for that address is already
 running, the sender MUST restart the timer if the earliest (i.e.,
 lowest TSN) outstanding DATA chunk sent to that address is being
 retransmitted. Otherwise, the data sender MUST NOT restart the
 timer.

 When starting or restarting the T3-rtx timer, the timer value SHOULD
 be adjusted according to the timer rules defined in Section 6.3.2 and
 Section 6.3.3.

 The data sender MUST NOT use a TSN that is more than 2^31 - 1 above
 the beginning TSN of the current send window.

 For each stream, the data sender MUST NOT have more than 2^16 - 1
 ordered user messages in the current send window.

 Whenever the sender of a DATA chunk can benefit from the
 corresponding SACK chunk being sent back without delay, the sender
 MAY set the I bit in the DATA chunk header. Please note that why the
 sender has set the I bit is irrelevant to the receiver.

 Reasons for setting the I bit include, but are not limited to, the
 following (see Section 4 of [RFC7053] for a discussion of the
 benefits):

Stewart, et al. Expires 9 August 2022 [Page 80]

Internet-Draft Stream Control Transmission Protocol February 2022

 * The application requests that the I bit of the last DATA chunk of
 a user message be set when providing the user message to the SCTP
 implementation (see Section 11.1).

 * The sender is in the SHUTDOWN-PENDING state.

 * The sending of a DATA chunk fills the congestion or receiver
 window.

6.2. Acknowledgement on Reception of DATA Chunks

 The SCTP endpoint MUST always acknowledge the reception of each valid
 DATA chunk when the DATA chunk received is inside its receive window.

 When the receiver’s advertised window is 0, the receiver MUST drop
 any new incoming DATA chunk with a TSN larger than the largest TSN
 received so far. Also, if the new incoming DATA chunk holds a TSN
 value less than the largest TSN received so far, then the receiver
 SHOULD drop the largest TSN held for reordering and accept the new
 incoming DATA chunk. In either case, if such a DATA chunk is
 dropped, the receiver MUST immediately send back a SACK chunk with
 the current receive window showing only DATA chunks received and
 accepted so far. The dropped DATA chunk(s) MUST NOT be included in
 the SACK chunk, as they were not accepted. The receiver MUST also
 have an algorithm for advertising its receive window to avoid
 receiver silly window syndrome (SWS), as described in [RFC1122]. The
 algorithm can be similar to the one described in Section 4.2.3.3 of
 [RFC1122].

 The guidelines on delayed acknowledgement algorithm specified in
 Section 4.2 of [RFC5681] SHOULD be followed. Specifically, an
 acknowledgement SHOULD be generated for at least every second packet
 (not every second DATA chunk) received, and SHOULD be generated
 within 200 ms of the arrival of any unacknowledged DATA chunk. In
 some situations, it might be beneficial for an SCTP transmitter to be
 more conservative than the algorithms detailed in this document
 allow. However, an SCTP transmitter MUST NOT be more aggressive in
 sending SACK chunks than the following algorithms allow.

 An SCTP receiver MUST NOT generate more than one SACK chunk for every
 incoming packet, other than to update the offered window as the
 receiving application consumes new data. When the window opens up,
 an SCTP receiver SHOULD send additional SACK chunks to update the
 window even if no new data is received. The receiver MUST avoid
 sending a large number of window updates -- in particular, large
 bursts of them. One way to achieve this is to send a window update
 only if the window can be increased by at least a quarter of the
 receive buffer size of the association.

Stewart, et al. Expires 9 August 2022 [Page 81]

Internet-Draft Stream Control Transmission Protocol February 2022

 Implementation Note: The maximum delay for generating an
 acknowledgement MAY be configured by the SCTP administrator, either
 statically or dynamically, in order to meet the specific timing
 requirement of the protocol being carried.

 An implementation MUST NOT allow the maximum delay (protocol
 parameter ’SACK.Delay’) to be configured to be more than 500 ms. In
 other words, an implementation MAY lower the value of ’SACK.Delay’
 below 500 ms but MUST NOT raise it above 500 ms.

 Acknowledgements MUST be sent in SACK chunks unless shutdown was
 requested by the ULP, in which case an endpoint MAY send an
 acknowledgement in the SHUTDOWN chunk. A SACK chunk can acknowledge
 the reception of multiple DATA chunks. See Section 3.3.4 for SACK
 chunk format. In particular, the SCTP endpoint MUST fill in the
 Cumulative TSN Ack field to indicate the latest sequential TSN (of a
 valid DATA chunk) it has received. Any received DATA chunks with TSN
 greater than the value in the Cumulative TSN Ack field are reported
 in the Gap Ack Block fields. The SCTP endpoint MUST report as many
 Gap Ack Blocks as can fit in a single SACK chunk such that the size
 of the SCTP packet does not exceed the current PMTU.

 The SHUTDOWN chunk does not contain Gap Ack Block fields. Therefore,
 the endpoint SHOULD use a SACK chunk instead of the SHUTDOWN chunk to
 acknowledge DATA chunks received out of order.

 Upon receipt of an SCTP packet containing a DATA chunk with the I bit
 set, the receiver SHOULD NOT delay the sending of the corresponding
 SACK chunk, i.e., the receiver SHOULD immediately respond with the
 corresponding SACK chunk.

 When a packet arrives with duplicate DATA chunk(s) and with no new
 DATA chunk(s), the endpoint MUST immediately send a SACK chunk with
 no delay. If a packet arrives with duplicate DATA chunk(s) bundled
 with new DATA chunks, the endpoint MAY immediately send a SACK chunk.
 Normally, receipt of duplicate DATA chunks will occur when the
 original SACK chunk was lost and the peer’s RTO has expired. The
 duplicate TSN number(s) SHOULD be reported in the SACK chunk as
 duplicate.

 When an endpoint receives a SACK chunk, it MAY use the duplicate TSN
 information to determine if SACK chunk loss is occurring. Further
 use of this data is for future study.

 The data receiver is responsible for maintaining its receive buffers.
 The data receiver SHOULD notify the data sender in a timely manner of
 changes in its ability to receive data. How an implementation
 manages its receive buffers is dependent on many factors (e.g.,

Stewart, et al. Expires 9 August 2022 [Page 82]

Internet-Draft Stream Control Transmission Protocol February 2022

 operating system, memory management system, amount of memory, etc.).
 However, the data sender strategy defined in Section 6.2.1 is based
 on the assumption of receiver operation similar to the following:

 A) At initialization of the association, the endpoint tells the peer
 how much receive buffer space it has allocated to the association
 in the INIT or INIT ACK chunk. The endpoint sets a_rwnd to this
 value.

 B) As DATA chunks are received and buffered, decrement a_rwnd by the
 number of bytes received and buffered. This is, in effect,
 closing rwnd at the data sender and restricting the amount of
 data it can transmit.

 C) As DATA chunks are delivered to the ULP and released from the
 receive buffers, increment a_rwnd by the number of bytes
 delivered to the upper layer. This is, in effect, opening up
 rwnd on the data sender and allowing it to send more data. The
 data receiver SHOULD NOT increment a_rwnd unless it has released
 bytes from its receive buffer. For example, if the receiver is
 holding fragmented DATA chunks in a reassembly queue, it SHOULD
 NOT increment a_rwnd.

 D) When sending a SACK chunk, the data receiver SHOULD place the
 current value of a_rwnd into the a_rwnd field. The data receiver
 SHOULD take into account that the data sender will not retransmit
 DATA chunks that are acked via the Cumulative TSN Ack (i.e., will
 drop from its retransmit queue).

 Under certain circumstances, the data receiver MAY drop DATA chunks
 that it has received but has not released from its receive buffers
 (i.e., delivered to the ULP). These DATA chunks might have been
 acked in Gap Ack Blocks. For example, the data receiver might be
 holding data in its receive buffers while reassembling a fragmented
 user message from its peer when it runs out of receive buffer space.
 It MAY drop these DATA chunks even though it has acknowledged them in
 Gap Ack Blocks. If a data receiver drops DATA chunks, it MUST NOT
 include them in Gap Ack Blocks in subsequent SACK chunks until they
 are received again via retransmission. In addition, the endpoint
 SHOULD take into account the dropped data when calculating its
 a_rwnd.

 An endpoint SHOULD NOT revoke a SACK chunk and discard data. Only in
 extreme circumstances might an endpoint use this procedure (such as
 out of buffer space). The data receiver SHOULD take into account
 that dropping data that has been acked in Gap Ack Blocks can result
 in suboptimal retransmission strategies in the data sender and thus
 in suboptimal performance.

Stewart, et al. Expires 9 August 2022 [Page 83]

Internet-Draft Stream Control Transmission Protocol February 2022

 The following example illustrates the use of delayed
 acknowledgements:

 Endpoint A Endpoint Z

 {App sends 3 messages; strm 0}
 DATA [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)
 (Start T3-rtx timer)

 DATA [TSN=8,Strm=0,Seq=4] ------------> (send ack)
 /------- SACK [TSN Ack=8,block=0]
 (cancel T3-rtx timer) <-----/

 DATA [TSN=9,Strm=0,Seq=5] ------------> (ack delayed)
 (Start T3-rtx timer)
 ...
 {App sends 1 message; strm 1}
 (bundle SACK with DATA)
 /----- SACK [TSN Ack=9,block=0] \
 / DATA [TSN=6,Strm=1,Seq=2]
 (cancel T3-rtx timer) <------/ (Start T3-rtx timer)

 (ack delayed)
 (send ack)
 SACK [TSN Ack=6,block=0] -------------> (cancel T3-rtx timer)

 Figure 7: Delayed Acknowledgement Example

 If an endpoint receives a DATA chunk with no user data (i.e., the
 Length field is set to 16), it SHOULD send an ABORT chunk with a "No
 User Data" error cause.

 An endpoint SHOULD NOT send a DATA chunk with no user data part.
 This avoids the need to be able to return a zero-length user message
 in the API, especially in the socket API as specified in [RFC6458]
 for details.

6.2.1. Processing a Received SACK Chunk

 Each SACK chunk an endpoint receives contains an a_rwnd value. This
 value represents the amount of buffer space the data receiver, at the
 time of transmitting the SACK chunk, has left of its total receive
 buffer space (as specified in the INIT/INIT ACK chunk). Using
 a_rwnd, Cumulative TSN Ack, and Gap Ack Blocks, the data sender can
 develop a representation of the peer’s receive buffer space.

Stewart, et al. Expires 9 August 2022 [Page 84]

Internet-Draft Stream Control Transmission Protocol February 2022

 One of the problems the data sender takes into account when
 processing a SACK chunk is that a SACK chunk can be received out of
 order. That is, a SACK chunk sent by the data receiver can pass an
 earlier SACK chunk and be received first by the data sender. If a
 SACK chunk is received out of order, the data sender can develop an
 incorrect view of the peer’s receive buffer space.

 Since there is no explicit identifier that can be used to detect out-
 of-order SACK chunks, the data sender uses heuristics to determine if
 a SACK chunk is new.

 An endpoint SHOULD use the following rules to calculate the rwnd,
 using the a_rwnd value, the Cumulative TSN Ack, and Gap Ack Blocks in
 a received SACK chunk.

 A) At the establishment of the association, the endpoint initializes
 the rwnd to the Advertised Receiver Window Credit (a_rwnd) the
 peer specified in the INIT or INIT ACK chunk.

 B) Any time a DATA chunk is transmitted (or retransmitted) to a
 peer, the endpoint subtracts the data size of the chunk from the
 rwnd of that peer.

 C) Any time a DATA chunk is marked for retransmission, either via
 T3-rtx timer expiration (Section 6.3.3) or via Fast Retransmit
 (Section 7.2.4), add the data size of those chunks to the rwnd.

 D) Any time a SACK chunk arrives, the endpoint performs the
 following:

 i) If Cumulative TSN Ack is less than the Cumulative TSN Ack
 Point, then drop the SACK chunk. Since Cumulative TSN Ack
 is monotonically increasing, a SACK chunk whose Cumulative
 TSN Ack is less than the Cumulative TSN Ack Point indicates
 an out-of-order SACK chunk.

 ii) Set rwnd equal to the newly received a_rwnd minus the
 number of bytes still outstanding after processing the
 Cumulative TSN Ack and the Gap Ack Blocks.

 iii) If the SACK chunk is missing a TSN that was previously
 acknowledged via a Gap Ack Block (e.g., the data receiver
 reneged on the data), then consider the corresponding DATA
 that might be possibly missing: Count one miss indication
 towards Fast Retransmit as described in Section 7.2.4, and
 if no retransmit timer is running for the destination
 address to which the DATA chunk was originally transmitted,
 then T3-rtx is started for that destination address.

Stewart, et al. Expires 9 August 2022 [Page 85]

Internet-Draft Stream Control Transmission Protocol February 2022

 iv) If the Cumulative TSN Ack matches or exceeds the Fast
 Recovery exitpoint (Section 7.2.4), Fast Recovery is
 exited.

6.3. Management of Retransmission Timer

 An SCTP endpoint uses a retransmission timer T3-rtx to ensure data
 delivery in the absence of any feedback from its peer. The duration
 of this timer is referred to as RTO (retransmission timeout).

 When an endpoint’s peer is multi-homed, the endpoint will calculate a
 separate RTO for each different destination transport address of its
 peer endpoint.

 The computation and management of RTO in SCTP follow closely how TCP
 manages its retransmission timer. To compute the current RTO, an
 endpoint maintains two state variables per destination transport
 address: SRTT (smoothed round-trip time) and RTTVAR (round-trip time
 variation).

6.3.1. RTO Calculation

 The rules governing the computation of SRTT, RTTVAR, and RTO are as
 follows:

 C1) Until an RTT measurement has been made for a packet sent to the
 given destination transport address, set RTO to the protocol
 parameter ’RTO.Initial’.

 C2) When the first RTT measurement R is made, perform

 SRTT = R;
 RTTVAR = R/2;
 RTO = SRTT + 4 * RTTVAR;

 C3) When a new RTT measurement R’ is made, perform:

 RTTVAR = (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R’|;
 SRTT = (1 - RTO.Alpha) * SRTT + RTO.Alpha * R’;

 Note: The value of SRTT used in the update to RTTVAR is its
 value before updating SRTT itself using the second assignment.

 After the computation, update

 RTO = SRTT + 4 * RTTVAR;

Stewart, et al. Expires 9 August 2022 [Page 86]

Internet-Draft Stream Control Transmission Protocol February 2022

 C4) When data is in flight and when allowed by rule C5 below, a new
 RTT measurement MUST be made each round trip. Furthermore, new
 RTT measurements SHOULD be made no more than once per round trip
 for a given destination transport address. There are two
 reasons for this recommendation: First, it appears that
 measuring more frequently often does not in practice yield any
 significant benefit [ALLMAN99]; second, if measurements are made
 more often, then the values of ’RTO.Alpha’ and ’RTO.Beta’ in
 rule C3 above SHOULD be adjusted so that SRTT and RTTVAR still
 adjust to changes at roughly the same rate (in terms of how many
 round trips it takes them to reflect new values) as they would
 if making only one measurement per round-trip and using
 ’RTO.Alpha’ and ’RTO.Beta’ as given in rule C3. However, the
 exact nature of these adjustments remains a research issue.

 C5) Karn’s algorithm: RTT measurements MUST NOT be made using chunks
 that were retransmitted (and thus for which it is ambiguous
 whether the reply was for the first instance of the chunk or for
 a later instance).

 RTT measurements SHOULD only be made using a DATA chunk with TSN
 r, if no DATA chunk with TSN less than or equal to r was
 retransmitted since the DATA chunk with TSN r was sent first.

 C6) Whenever RTO is computed, if it is less than ’RTO.Min’ seconds
 then it is rounded up to ’RTO.Min’ seconds. The reason for this
 rule is that RTOs that do not have a high minimum value are
 susceptible to unnecessary timeouts [ALLMAN99].

 C7) A maximum value MAY be placed on RTO provided it is at least
 ’RTO.max’ seconds.

 There is no requirement for the clock granularity G used for
 computing RTT measurements and the different state variables, other
 than:

 G1) Whenever RTTVAR is computed, if RTTVAR == 0, then adjust RTTVAR
 = G.

 Experience [ALLMAN99] has shown that finer clock granularities (less
 than 100 msec) perform somewhat better than more coarse
 granularities.

 See Section 16 for suggested parameter values.

Stewart, et al. Expires 9 August 2022 [Page 87]

Internet-Draft Stream Control Transmission Protocol February 2022

6.3.2. Retransmission Timer Rules

 The rules for managing the retransmission timer are as follows:

 R1) Every time a DATA chunk is sent to any address (including a
 retransmission), if the T3-rtx timer of that address is not
 running, start it running so that it will expire after the RTO
 of that address. The RTO used here is that obtained after any
 doubling due to previous T3-rtx timer expirations on the
 corresponding destination address as discussed in rule E2 below.

 R2) Whenever all outstanding data sent to an address have been
 acknowledged, turn off the T3-rtx timer of that address.

 R3) Whenever a SACK chunk is received that acknowledges the DATA
 chunk with the earliest outstanding TSN for that address,
 restart the T3-rtx timer for that address with its current RTO
 (if there is still outstanding data on that address).

 R4) Whenever a SACK chunk is received missing a TSN that was
 previously acknowledged via a Gap Ack Block, start the T3-rtx
 for the destination address to which the DATA chunk was
 originally transmitted if it is not already running.

 The following example shows the use of various timer rules (assuming
 that the receiver uses delayed acks).

 Endpoint A Endpoint Z
 {App begins to send}
 Data [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)
 (Start T3-rtx timer)
 {App sends 1 message; strm 1}
 (bundle ack with data)
 DATA [TSN=8,Strm=0,Seq=4] ----\ /-- SACK [TSN Ack=7,Block=0]
 \ / DATA [TSN=6,Strm=1,Seq=2]
 \ / (Start T3-rtx timer)
 \
 / \
 (Restart T3-rtx timer) <------/ \--> (ack delayed)
 (ack delayed)
 {send ack}
 SACK [TSN Ack=6,Block=0] --------------> (Cancel T3-rtx timer)
 ..
 (send ack)
 (Cancel T3-rtx timer) <-------------- SACK [TSN Ack=8,Block=0]

 Figure 8: Timer Rule Examples

Stewart, et al. Expires 9 August 2022 [Page 88]

Internet-Draft Stream Control Transmission Protocol February 2022

6.3.3. Handle T3-rtx Expiration

 Whenever the retransmission timer T3-rtx expires for a destination
 address, do the following:

 E1) For the destination address for which the timer expires, adjust
 its ssthresh with rules defined in Section 7.2.3 and set the
 cwnd = PMDCS.

 E2) For the destination address for which the timer expires, set RTO
 = RTO * 2 ("back off the timer"). The maximum value discussed
 in rule C7 above (’RTO.max’) MAY be used to provide an upper
 bound to this doubling operation.

 E3) Determine how many of the earliest (i.e., lowest TSN)
 outstanding DATA chunks for the address for which the T3-rtx has
 expired will fit into a single SCTP packet, subject to the PMTU
 corresponding to the destination transport address to which the
 retransmission is being sent (this might be different from the
 address for which the timer expires; see Section 6.4). Call
 this value K. Bundle and retransmit those K DATA chunks in a
 single packet to the destination endpoint.

 E4) Start the retransmission timer T3-rtx on the destination address
 to which the retransmission is sent, if rule R1 above indicates
 to do so. The RTO to be used for starting T3-rtx SHOULD be the
 one for the destination address to which the retransmission is
 sent, which, when the receiver is multi-homed, might be
 different from the destination address for which the timer
 expired (see Section 6.4 below).

 After retransmitting, once a new RTT measurement is obtained (which
 can happen only when new data has been sent and acknowledged, per
 rule C5, or for a measurement made from a HEARTBEAT chunk; see
 Section 8.3), the computation in rule C3 is performed, including the
 computation of RTO, which might result in "collapsing" RTO back down
 after it has been subject to doubling (rule E2).

 Any DATA chunks that were sent to the address for which the T3-rtx
 timer expired but did not fit in an SCTP packet of size smaller than
 or equal to the PMTU (rule E3 above) SHOULD be marked for
 retransmission and sent as soon as cwnd allows (normally, when a SACK
 chunk arrives).

 The final rule for managing the retransmission timer concerns
 failover (see Section 6.4.1):

Stewart, et al. Expires 9 August 2022 [Page 89]

Internet-Draft Stream Control Transmission Protocol February 2022

 F1) Whenever an endpoint switches from the current destination
 transport address to a different one, the current retransmission
 timers are left running. As soon as the endpoint transmits a
 packet containing DATA chunk(s) to the new transport address,
 start the timer on that transport address, using the RTO value
 of the destination address to which the data is being sent, if
 rule R1 indicates to do so.

6.4. Multi-Homed SCTP Endpoints

 An SCTP endpoint is considered multi-homed if there is more than one
 transport address that can be used as a destination address to reach
 that endpoint.

 Moreover, the ULP of an endpoint selects one of the multiple
 destination addresses of a multi-homed peer endpoint as the primary
 path (see Section 5.1.2 and Section 11.1 for details).

 By default, an endpoint SHOULD always transmit to the primary path,
 unless the SCTP user explicitly specifies the destination transport
 address (and possibly source transport address) to use.

 An endpoint SHOULD transmit reply chunks (e.g., INIT ACK, COOKIE ACK,
 HEARTBEAT ACK) in response to control chunks to the same destination
 transport address from which it received the control chunk to which
 it is replying.

 The selection of the destination transport address for packets
 containing SACK chunks is implementation dependent. However, an
 endpoint SHOULD NOT vary the destination transport address of a SACK
 chunk when it receives DATA chunks coming from the same source
 address.

 When acknowledging multiple DATA chunks received in packets from
 different source addresses in a single SACK chunk, the SACK chunk MAY
 be transmitted to one of the destination transport addresses from
 which the DATA or control chunks being acknowledged were received.

 When a receiver of a duplicate DATA chunk sends a SACK chunk to a
 multi-homed endpoint, it MAY be beneficial to vary the destination
 address and not use the source address of the DATA chunk. The reason
 is that receiving a duplicate from a multi-homed endpoint might
 indicate that the return path (as specified in the source address of
 the DATA chunk) for the SACK chunk is broken.

Stewart, et al. Expires 9 August 2022 [Page 90]

Internet-Draft Stream Control Transmission Protocol February 2022

 Furthermore, when its peer is multi-homed, an endpoint SHOULD try to
 retransmit a chunk that timed out to an active destination transport
 address that is different from the last destination address to which
 the chunk was sent.

 When its peer is multi-homed, an endpoint SHOULD send fast
 retransmissions to the same destination transport address to which
 the original data was sent. If the primary path has been changed and
 the original data was sent to the old primary path before the Fast
 Retransmit, the implementation MAY send it to the new primary path.

 Retransmissions do not affect the total outstanding data count.
 However, if the DATA chunk is retransmitted onto a different
 destination address, both the outstanding data counts on the new
 destination address and the old destination address to which the data
 chunk was last sent is adjusted accordingly.

6.4.1. Failover from an Inactive Destination Address

 Some of the transport addresses of a multi-homed SCTP endpoint might
 become inactive due to either the occurrence of certain error
 conditions (see Section 8.2) or adjustments from the SCTP user.

 When there is outbound data to send and the primary path becomes
 inactive (e.g., due to failures), or where the SCTP user explicitly
 requests to send data to an inactive destination transport address,
 before reporting an error to its ULP, the SCTP endpoint SHOULD try to
 send the data to an alternate active destination transport address if
 one exists.

 When retransmitting data that timed out, if the endpoint is multi-
 homed, it needs to consider each source-destination address pair in
 its retransmission selection policy. When retransmitting timed-out
 data, the endpoint SHOULD attempt to pick the most divergent source-
 destination pair from the original source-destination pair to which
 the packet was transmitted.

 Note: Rules for picking the most divergent source-destination pair
 are an implementation decision and are not specified within this
 document.

Stewart, et al. Expires 9 August 2022 [Page 91]

Internet-Draft Stream Control Transmission Protocol February 2022

6.5. Stream Identifier and Stream Sequence Number

 Every DATA chunk MUST carry a valid stream identifier. If an
 endpoint receives a DATA chunk with an invalid stream identifier, it
 SHOULD acknowledge the reception of the DATA chunk following the
 normal procedure, immediately send an ERROR chunk with cause set to
 "Invalid Stream Identifier" (see Section 3.3.10), and discard the
 DATA chunk. The endpoint MAY bundle the ERROR chunk and the SACK
 chunk in the same packet.

 The Stream Sequence Number in all the outgoing streams MUST start
 from 0 when the association is established. The Stream Sequence
 Number of an outgoing stream MUST be incremented by 1 for each
 ordered user message sent on that outgoing stream. In particular,
 when the Stream Sequence Number reaches the value 65535 the next
 Stream Sequence Number MUST be set to 0. For unordered user messages
 the Stream Sequence Number MUST NOT be changed.

6.6. Ordered and Unordered Delivery

 Within a stream, an endpoint MUST deliver DATA chunks received with
 the U flag set to 0 to the upper layer according to the order of
 their Stream Sequence Number. If DATA chunks arrive out of order of
 their Stream Sequence Number, the endpoint MUST hold the received
 DATA chunks from delivery to the ULP until they are reordered.

 However, an SCTP endpoint can indicate that no ordered delivery is
 required for a particular DATA chunk transmitted within the stream by
 setting the U flag of the DATA chunk to 1.

 When an endpoint receives a DATA chunk with the U flag set to 1, it
 bypasses the ordering mechanism and immediately deliver the data to
 the upper layer (after reassembly if the user data is fragmented by
 the data sender).

 This provides an effective way of transmitting "out-of-band" data in
 a given stream. Also, a stream can be used as an "unordered" stream
 by simply setting the U flag to 1 in all DATA chunks sent through
 that stream.

 Implementation Note: When sending an unordered DATA chunk, an
 implementation MAY choose to place the DATA chunk in an outbound
 packet that is at the head of the outbound transmission queue if
 possible.

 The ’Stream Sequence Number’ field in a DATA chunk with U flag set to
 1 has no significance. The sender can fill the ’Stream Sequence
 Number’ with arbitrary value, but the receiver MUST ignore the field.

Stewart, et al. Expires 9 August 2022 [Page 92]

Internet-Draft Stream Control Transmission Protocol February 2022

 Note: When transmitting ordered and unordered data, an endpoint does
 not increment its Stream Sequence Number when transmitting a DATA
 chunk with U flag set to 1.

6.7. Report Gaps in Received DATA TSNs

 Upon the reception of a new DATA chunk, an endpoint examines the
 continuity of the TSNs received. If the endpoint detects a gap in
 the received DATA chunk sequence, it SHOULD send a SACK chunk with
 Gap Ack Blocks immediately. The data receiver continues sending a
 SACK chunk after receipt of each SCTP packet that does not fill the
 gap.

 Based on the Gap Ack Block from the received SACK chunk, the endpoint
 can calculate the missing DATA chunks and make decisions on whether
 to retransmit them (see Section 6.2.1 for details).

 Multiple gaps can be reported in one single SACK chunk (see
 Section 3.3.4).

 When its peer is multi-homed, the SCTP endpoint SHOULD always try to
 send the SACK chunk to the same destination address from which the
 last DATA chunk was received.

 Upon the reception of a SACK chunk, the endpoint MUST remove all DATA
 chunks that have been acknowledged by the SACK chunk’s Cumulative TSN
 Ack from its transmit queue. All DATA chunks with TSNs not included
 in the Gap Ack Blocks that are smaller than the highest acknowledged
 TSN reported in the SACK chunk MUST be treated as "missing" by the
 sending endpoint. The number of "missing" reports for each
 outstanding DATA chunk MUST be recorded by the data sender to make
 retransmission decisions. See Section 7.2.4 for details.

 The following example shows the use of SACK chunk to report a gap.

Stewart, et al. Expires 9 August 2022 [Page 93]

Internet-Draft Stream Control Transmission Protocol February 2022

 Endpoint A Endpoint Z
 {App sends 3 messages; strm 0}
 DATA [TSN=6,Strm=0,Seq=2] ---------------> (ack delayed)
 (Start T3-rtx timer)

 DATA [TSN=7,Strm=0,Seq=3] --------> X (lost)

 DATA [TSN=8,Strm=0,Seq=4] ---------------> (gap detected,
 immediately send ack)
 /----- SACK [TSN Ack=6,Block=1,
 / Start=2,End=2]
 <-----/
 (remove 6 from out-queue,
 and mark 7 as "1" missing report)

 Figure 9: Reporting a Gap using SACK Chunk

 The maximum number of Gap Ack Blocks that can be reported within a
 single SACK chunk is limited by the current PMTU. When a single SACK
 chunk cannot cover all the Gap Ack Blocks needed to be reported due
 to the PMTU limitation, the endpoint MUST send only one SACK chunk.
 This single SACK chunk MUST report the Gap Ack Blocks from the lowest
 to highest TSNs, within the size limit set by the PMTU, and leave the
 remaining highest TSN numbers unacknowledged.

6.8. CRC32c Checksum Calculation

 When sending an SCTP packet, the endpoint MUST strengthen the data
 integrity of the transmission by including the CRC32c checksum value
 calculated on the packet, as described below.

 After the packet is constructed (containing the SCTP common header
 and one or more control or DATA chunks), the transmitter MUST

 1) fill in the proper Verification Tag in the SCTP common header and
 initialize the checksum field to 0,

 2) calculate the CRC32c checksum of the whole packet, including the
 SCTP common header and all the chunks (refer to Appendix A for
 details of the CRC32c algorithm); and

 3) put the resultant value into the checksum field in the common
 header, and leave the rest of the bits unchanged.

 When an SCTP packet is received, the receiver MUST first check the
 CRC32c checksum as follows:

 1) Store the received CRC32c checksum value aside.

Stewart, et al. Expires 9 August 2022 [Page 94]

Internet-Draft Stream Control Transmission Protocol February 2022

 2) Replace the 32 bits of the checksum field in the received SCTP
 packet with 0 and calculate a CRC32c checksum value of the whole
 received packet.

 3) Verify that the calculated CRC32c checksum is the same as the
 received CRC32c checksum. If it is not, the receiver MUST treat
 the packet as an invalid SCTP packet.

 The default procedure for handling invalid SCTP packets is to
 silently discard them.

 Any hardware implementation SHOULD permit alternative verification of
 the CRC in software.

6.9. Fragmentation and Reassembly

 An endpoint MAY support fragmentation when sending DATA chunks, but
 it MUST support reassembly when receiving DATA chunks. If an
 endpoint supports fragmentation, it MUST fragment a user message if
 the size of the user message to be sent causes the outbound SCTP
 packet size to exceed the current PMTU. An endpoint that does not
 support fragmentation and is requested to send a user message such
 that the outbound SCTP packet size would exceed the current PMTU MUST
 return an error to its upper layer and MUST NOT attempt to send the
 user message.

 An SCTP implementation MAY provide a mechanism to the upper layer
 that disables fragmentation when sending DATA chunks. When
 fragmentation of DATA chunks is disabeled, the SCTP implementation
 MUST behave in the same way an implementation that does not support
 fragmentation, i.e., it rejects calls that would result in sending
 SCTP packets that exceed the current PMTU.

 Implementation Note: In this error case, the SEND primitive discussed
 in Section 11.1 would need to return an error to the upper layer.

 If its peer is multi-homed, the endpoint SHOULD choose a DATA chunk
 size smaller than or equal to the AMDCS.

 Once a user message is fragmented, it cannot be re-fragmented.
 Instead, if the PMTU has been reduced, then IP fragmentation MUST be
 used. Therefore, an SCTP association can fail if IP fragmentation is
 not working on any path. Please see Section 7.3 for details of PMTU
 discovery.

Stewart, et al. Expires 9 August 2022 [Page 95]

Internet-Draft Stream Control Transmission Protocol February 2022

 When determining when to fragment, the SCTP implementation MUST take
 into account the SCTP packet header as well as the DATA chunk
 header(s). The implementation MUST also take into account the space
 required for a SACK chunk if bundling a SACK chunk with the DATA
 chunk.

 Fragmentation takes the following steps:

 1) The data sender MUST break the user message into a series of DATA
 chunks. The sender SHOULD choose a size of DATA chunks that is
 smaller than or equal to the AMDCS.

 2) The transmitter MUST then assign, in sequence, a separate TSN to
 each of the DATA chunks in the series. The transmitter assigns
 the same Stream Sequence Number to each of the DATA chunks. If
 the user indicates that the user message is to be delivered using
 unordered delivery, then the U flag of each DATA chunk of the
 user message MUST be set to 1.

 3) The transmitter MUST also set the B/E bits of the first DATA
 chunk in the series to ’10’, the B/E bits of the last DATA chunk
 in the series to ’01’, and the B/E bits of all other DATA chunks
 in the series to ’00’.

 An endpoint MUST recognize fragmented DATA chunks by examining the B/
 E bits in each of the received DATA chunks, and queue the fragmented
 DATA chunks for reassembly. Once the user message is reassembled,
 SCTP passes the reassembled user message to the specific stream for
 possible reordering and final dispatching.

 If the data receiver runs out of buffer space while still waiting for
 more fragments to complete the reassembly of the message, it SHOULD
 dispatch part of its inbound message through a partial delivery API
 (see Section 11), freeing some of its receive buffer space so that
 the rest of the message can be received.

6.10. Bundling

 An endpoint bundles chunks by simply including multiple chunks in one
 outbound SCTP packet. The total size of the resultant SCTP packet
 MUST be less that or equal to the current PMTU.

 If its peer endpoint is multi-homed, the sending endpoint SHOULD
 choose a size no larger than the PMTU of the current primary path.

Stewart, et al. Expires 9 August 2022 [Page 96]

Internet-Draft Stream Control Transmission Protocol February 2022

 When bundling control chunks with DATA chunks, an endpoint MUST place
 control chunks first in the outbound SCTP packet. The transmitter
 MUST transmit DATA chunks within an SCTP packet in increasing order
 of TSN.

 Note: Since control chunks are placed first in a packet and since
 DATA chunks are transmitted before SHUTDOWN or SHUTDOWN ACK chunks,
 DATA chunks cannot be bundled with SHUTDOWN or SHUTDOWN ACK chunks.

 Partial chunks MUST NOT be placed in an SCTP packet. A partial chunk
 is a chunk that is not completely contained in the SCTP packet; i.e.,
 the SCTP packet is too short to contain all the bytes of the chunk as
 indicated by the chunk length.

 An endpoint MUST process received chunks in their order in the
 packet. The receiver uses the Chunk Length field to determine the
 end of a chunk and beginning of the next chunk taking account of the
 fact that all chunks end on a 4-byte boundary. If the receiver
 detects a partial chunk, it MUST drop the chunk.

 An endpoint MUST NOT bundle INIT, INIT ACK, or SHUTDOWN COMPLETE
 chunks with any other chunks.

7. Congestion Control

 Congestion control is one of the basic functions in SCTP. To manage
 congestion, the mechanisms and algorithms in this section are to be
 employed.

 Implementation Note: As far as its specific performance requirements
 are met, an implementation is always allowed to adopt a more
 conservative congestion control algorithm than the one defined below.

 The congestion control algorithms used by SCTP are based on
 [RFC5681]. This section describes how the algorithms defined in
 [RFC5681] are adapted for use in SCTP. We first list differences in
 protocol designs between TCP and SCTP, and then describe SCTP’s
 congestion control scheme. The description will use the same
 terminology as in TCP congestion control whenever appropriate.

 SCTP congestion control is always applied to the entire association,
 and not to individual streams.

Stewart, et al. Expires 9 August 2022 [Page 97]

Internet-Draft Stream Control Transmission Protocol February 2022

7.1. SCTP Differences from TCP Congestion Control

 Gap Ack Blocks in the SCTP SACK chunk carry the same semantic meaning
 as the TCP SACK. TCP considers the information carried in the SACK
 as advisory information only. SCTP considers the information carried
 in the Gap Ack Blocks in the SACK chunk as advisory. In SCTP, any
 DATA chunk that has been acknowledged by a SACK chunk, including DATA
 that arrived at the receiving end out of order, is not considered
 fully delivered until the Cumulative TSN Ack Point passes the TSN of
 the DATA chunk (i.e., the DATA chunk has been acknowledged by the
 Cumulative TSN Ack field in the SACK chunk). Consequently, the value
 of cwnd controls the amount of outstanding data, rather than (as in
 the case of non-SACK TCP) the upper bound between the highest
 acknowledged sequence number and the latest DATA chunk that can be
 sent within the congestion window. SCTP SACK leads to different
 implementations of Fast Retransmit and Fast Recovery than non-SACK
 TCP. As an example, see [FALL96].

 The biggest difference between SCTP and TCP, however, is multi-
 homing. SCTP is designed to establish robust communication
 associations between two endpoints each of which might be reachable
 by more than one transport address. Potentially different addresses
 might lead to different data paths between the two endpoints; thus,
 ideally one needs a separate set of congestion control parameters for
 each of the paths. The treatment here of congestion control for
 multi-homed receivers is new with SCTP and might require refinement
 in the future. The current algorithms make the following
 assumptions:

 * The sender usually uses the same destination address until being
 instructed by the upper layer to do otherwise; however, SCTP MAY
 change to an alternate destination in the event an address is
 marked inactive (see Section 8.2). Also, SCTP MAY retransmit to a
 different transport address than the original transmission.

 * The sender keeps a separate congestion control parameter set for
 each of the destination addresses it can send to (not each source-
 destination pair but for each destination). The parameters SHOULD
 decay if the address is not used for a long enough time period.
 [RFC5681] specifies this period of time as a retransmission
 timeout.

 * For each of the destination addresses, an endpoint does slow start
 upon the first transmission to that address.

 Note: TCP guarantees in-sequence delivery of data to its upper-layer
 protocol within a single TCP session. This means that when TCP
 notices a gap in the received sequence number, it waits until the gap

Stewart, et al. Expires 9 August 2022 [Page 98]

Internet-Draft Stream Control Transmission Protocol February 2022

 is filled before delivering the data that was received with sequence
 numbers higher than that of the missing data. On the other hand,
 SCTP can deliver data to its upper-layer protocol even if there is a
 gap in TSN if the Stream Sequence Numbers are in sequence for a
 particular stream (i.e., the missing DATA chunks are for a different
 stream) or if unordered delivery is indicated. Although this does
 not affect cwnd, it might affect rwnd calculation.

7.2. SCTP Slow-Start and Congestion Avoidance

 The slow-start and congestion avoidance algorithms MUST be used by an
 endpoint to control the amount of data being injected into the
 network. The congestion control in SCTP is employed in regard to the
 association, not to an individual stream. In some situations, it
 might be beneficial for an SCTP sender to be more conservative than
 the algorithms allow; however, an SCTP sender MUST NOT be more
 aggressive than the following algorithms allow.

 Like TCP, an SCTP endpoint uses the following three control variables
 to regulate its transmission rate.

 * Receiver advertised window size (rwnd, in bytes), which is set by
 the receiver based on its available buffer space for incoming
 packets.

 Note: This variable is kept on the entire association.

 * Congestion control window (cwnd, in bytes), which is adjusted by
 the sender based on observed network conditions.

 Note: This variable is maintained on a per-destination-address
 basis.

 * Slow-start threshold (ssthresh, in bytes), which is used by the
 sender to distinguish slow-start and congestion avoidance phases.

 Note: This variable is maintained on a per-destination-address
 basis.

 SCTP also requires one additional control variable,
 partial_bytes_acked, which is used during congestion avoidance phase
 to facilitate cwnd adjustment.

 Unlike TCP, an SCTP sender MUST keep a set of these control variables
 cwnd, ssthresh, and partial_bytes_acked for EACH destination address
 of its peer (when its peer is multi-homed). When calculating one of
 these variables, the length of the DATA chunk including the padding
 SHOULD be used.

Stewart, et al. Expires 9 August 2022 [Page 99]

Internet-Draft Stream Control Transmission Protocol February 2022

 Only one rwnd is kept for the whole association (no matter if the
 peer is multi-homed or has a single address).

7.2.1. Slow-Start

 Beginning data transmission into a network with unknown conditions or
 after a sufficiently long idle period requires SCTP to probe the
 network to determine the available capacity. The slow-start
 algorithm is used for this purpose at the beginning of a transfer, or
 after repairing loss detected by the retransmission timer.

 * The initial cwnd before data transmission MUST be set to min(4 *
 PMDCS, max(2 * PMDCS, 4404)) bytes if the peer address is an IPv4
 address and to min(4 * PMDCS, max(2 * PMDCS, 4344)) bytes if the
 peer address is an IPv6 address.

 * The initial cwnd after a retransmission timeout MUST be no more
 than PMDCS, and only one packet is allowed to be in flight until
 successful acknowledgement.

 * The initial value of ssthresh SHOULD be arbitrarily high (e.g.,
 the size of the largest possible advertised window).

 * Whenever cwnd is greater than zero, the endpoint is allowed to
 have cwnd bytes of data outstanding on that transport address. A
 limited overbooking as described in Section 6.1 B) SHOULD be
 supported.

 * When cwnd is less than or equal to ssthresh, an SCTP endpoint MUST
 use the slow-start algorithm to increase cwnd only if the current
 congestion window is being fully utilized, and the data sender is
 not in Fast Recovery. Only when these two conditions are met can
 the cwnd be increased; otherwise, the cwnd MUST NOT be increased.
 If these conditions are met, then cwnd MUST be increased by, at
 most, the lesser of

 1. the total size of the previously outstanding DATA chunk(s)
 acknowledged, and

 2. L times the destination’s PMDCS.

 The first upper bound protects against the ACK-Splitting attack
 outlined in [SAVAGE99]. The positive integer L SHOULD be 1, and
 MAY be larger than 1. See [RFC3465] for details of choosing L.

Stewart, et al. Expires 9 August 2022 [Page 100]

Internet-Draft Stream Control Transmission Protocol February 2022

 In instances where its peer endpoint is multi-homed, if an
 endpoint receives a SACK chunk that results in updating the cwnd,
 then it SHOULD update its cwnd (or cwnds) apportioned to the
 destination addresses to which it transmitted the acknowledged
 data.

 * While the endpoint does not transmit data on a given transport
 address, the cwnd of the transport address SHOULD be adjusted to
 max(cwnd / 2, 4 * PMDCS) once per RTO. Before the first cwnd
 adjustment, the ssthresh of the transport address SHOULD be set to
 the cwnd.

7.2.2. Congestion Avoidance

 When cwnd is greater than ssthresh, cwnd SHOULD be incremented by
 PMDCS per RTT if the sender has cwnd or more bytes of data
 outstanding for the corresponding transport address. The basic
 recommendations for incrementing cwnd during congestion avoidance are
 as follows:

 * SCTP MAY increment cwnd by PMDCS.

 * SCTP SHOULD increment cwnd by PMDCS once per RTT when the sender
 has cwnd or more bytes of data outstanding for the corresponding
 transport address.

 * SCTP MUST NOT increment cwnd by more than PMDCS per RTT.

 In practice, an implementation can achieve this goal in the following
 way:

 * partial_bytes_acked is initialized to 0.

 * Whenever cwnd is greater than ssthresh, upon each SACK chunk
 arrival, increase partial_bytes_acked by the total number of bytes
 (including the chunk header and the padding) of all new DATA
 chunks acknowledged in that SACK chunk, including chunks
 acknowledged by the new Cumulative TSN Ack, by Gap Ack Blocks, and
 by the number of bytes of duplicated chunks reported in Duplicate
 TSNs.

 * When (1) partial_bytes_acked is greater than cwnd and (2) before
 the arrival of the SACK chunk the sender had less than cwnd bytes
 of data outstanding (i.e., before the arrival of the SACK chunk,
 flightsize was less than cwnd), reset partial_bytes_acked to cwnd.

Stewart, et al. Expires 9 August 2022 [Page 101]

Internet-Draft Stream Control Transmission Protocol February 2022

 * When (1) partial_bytes_acked is equal to or greater than cwnd and
 (2) before the arrival of the SACK chunk the sender had cwnd or
 more bytes of data outstanding (i.e., before the arrival of the
 SACK chunk, flightsize was greater than or equal to cwnd),
 partial_bytes_acked is reset to (partial_bytes_acked - cwnd).
 Next, cwnd is increased by PMDCS.

 * Same as in the slow start, when the sender does not transmit DATA
 chunks on a given transport address, the cwnd of the transport
 address SHOULD be adjusted to max(cwnd / 2, 4 * PMDCS) per RTO.

 * When all of the data transmitted by the sender has been
 acknowledged by the receiver, partial_bytes_acked is initialized
 to 0.

7.2.3. Congestion Control

 Upon detection of packet losses from SACK chunks (see Section 7.2.4),
 an endpoint SHOULD do the following:

 ssthresh = max(cwnd / 2, 4 * PMDCS)
 cwnd = ssthresh
 partial_bytes_acked = 0

 Basically, a packet loss causes cwnd to be cut in half.

 When the T3-rtx timer expires on an address, SCTP SHOULD perform slow
 start by:

 ssthresh = max(cwnd / 2, 4 * PMDCS)
 cwnd = PMDCS
 partial_bytes_acked = 0

 and ensure that no more than one SCTP packet will be in flight for
 that address until the endpoint receives acknowledgement for
 successful delivery of data to that address.

7.2.4. Fast Retransmit on Gap Reports

 In the absence of data loss, an endpoint performs delayed
 acknowledgement. However, whenever an endpoint notices a hole in the
 arriving TSN sequence, it SHOULD start sending a SACK chunk back
 every time a packet arrives carrying data until the hole is filled.

 Whenever an endpoint receives a SACK chunk that indicates that some
 TSNs are missing, it SHOULD wait for two further miss indications
 (via subsequent SACK chunks for a total of three missing reports) on
 the same TSNs before taking action with regard to Fast Retransmit.

Stewart, et al. Expires 9 August 2022 [Page 102]

Internet-Draft Stream Control Transmission Protocol February 2022

 Miss indications SHOULD follow the HTNA (Highest TSN Newly
 Acknowledged) algorithm. For each incoming SACK chunk, miss
 indications are incremented only for missing TSNs prior to the
 highest TSN newly acknowledged in the SACK chunk. A newly
 acknowledged DATA chunk is one not previously acknowledged in a SACK
 chunk. If an endpoint is in Fast Recovery and a SACK chunks arrives
 that advances the Cumulative TSN Ack Point, the miss indications are
 incremented for all TSNs reported missing in the SACK chunk.

 When the third consecutive miss indication is received for a TSN(s),
 the data sender does the following:

 1) Mark the DATA chunk(s) with three miss indications for
 retransmission.

 2) If not in Fast Recovery, adjust the ssthresh and cwnd of the
 destination address(es) to which the missing DATA chunks were
 last sent, according to the formula described in Section 7.2.3.

 3) If not in Fast Recovery, determine how many of the earliest
 (i.e., lowest TSN) DATA chunks marked for retransmission will fit
 into a single packet, subject to constraint of the PMTU of the
 destination transport address to which the packet is being sent.
 Call this value K. Retransmit those K DATA chunks in a single
 packet. When a Fast Retransmit is being performed, the sender
 SHOULD ignore the value of cwnd and SHOULD NOT delay
 retransmission for this single packet.

 4) Restart the T3-rtx timer only if the last SACK chunk acknowledged
 the lowest outstanding TSN number sent to that address, or the
 endpoint is retransmitting the first outstanding DATA chunk sent
 to that address.

 5) Mark the DATA chunk(s) as being fast retransmitted and thus
 ineligible for a subsequent Fast Retransmit. Those TSNs marked
 for retransmission due to the Fast-Retransmit algorithm that did
 not fit in the sent datagram carrying K other TSNs are also
 marked as ineligible for a subsequent Fast Retransmit. However,
 as they are marked for retransmission they will be retransmitted
 later on as soon as cwnd allows.

 6) If not in Fast Recovery, enter Fast Recovery and mark the highest
 outstanding TSN as the Fast Recovery exit point. When a SACK
 chunk acknowledges all TSNs up to and including this exit point,
 Fast Recovery is exited. While in Fast Recovery, the ssthresh
 and cwnd SHOULD NOT change for any destinations due to a
 subsequent Fast Recovery event (i.e., one SHOULD NOT reduce the
 cwnd further due to a subsequent Fast Retransmit).

Stewart, et al. Expires 9 August 2022 [Page 103]

Internet-Draft Stream Control Transmission Protocol February 2022

 Note: Before the above adjustments, if the received SACK chunk also
 acknowledges new DATA chunks and advances the Cumulative TSN Ack
 Point, the cwnd adjustment rules defined in Section 7.2.1 and
 Section 7.2.2 MUST be applied first.

7.2.5. Reinitialization

 During the lifetime of an SCTP association events can happen, which
 result in using the network under unknown new conditions. When
 detected by an SCTP implementation, the congestion control MUST be
 reinitialized.

7.2.5.1. Change of Differentiated Services Code Points

 SCTP implementations MAY allow an application to configure the
 Differentiated Services Code Point (DSCP) used for sending packets.
 If a DSCP change might result in outgoing packets being queued in
 different queues, the congestion control parameters for all affected
 destination addresses MUST be reset to their initial values.

7.2.5.2. Change of Routes

 SCTP implementations MAY be aware of routing changes affecting
 packets sent to a destination address. In particular, this includes
 the selection of a different source address used for sending packets
 to a destination address. If such a routing change happens, the
 congestion control parameters for the affected destination addresses
 MUST be reset to their initial values.

7.3. PMTU Discovery

 [RFC8899], [RFC8201], and [RFC1191] specify "Packetization Layer Path
 MTU Discovery", whereby an endpoint maintains an estimate of PMTU
 along a given Internet path and refrains from sending packets along
 that path that exceed the PMTU, other than occasional attempts to
 probe for a change in the PMTU. [RFC8899] is thorough in its
 discussion of the PMTU discovery mechanism and strategies for
 determining the current end-to-end PMTU setting as well as detecting
 changes in this value.

 An endpoint SHOULD apply these techniques, and SHOULD do so on a per-
 destination-address basis.

 There are two important SCTP-specific points regarding PMTU
 discovery:

Stewart, et al. Expires 9 August 2022 [Page 104]

Internet-Draft Stream Control Transmission Protocol February 2022

 1) SCTP associations can span multiple addresses. An endpoint MUST
 maintain separate PMTU estimates for each destination address of
 its peer.

 2) The sender SHOULD track an AMDCS that will be the smallest PMDCS
 discovered for all of the peer’s destination addresses. When
 fragmenting messages into multiple parts this AMDCS SHOULD be
 used to calculate the size of each DATA chunk. This will allow
 retransmissions to be seamlessly sent to an alternate address
 without encountering IP fragmentation.

8. Fault Management

8.1. Endpoint Failure Detection

 An endpoint SHOULD keep a counter on the total number of consecutive
 retransmissions to its peer (this includes data retransmissions to
 all the destination transport addresses of the peer if it is multi-
 homed), including the number of unacknowledged HEARTBEAT chunks
 observed on the path that is currently used for data transfer.
 Unacknowledged HEARTBEAT chunks observed on paths different from the
 path currently used for data transfer SHOULD NOT increment the
 association error counter, as this could lead to association closure
 even if the path that is currently used for data transfer is
 available (but idle). If the value of this counter exceeds the limit
 indicated in the protocol parameter ’Association.Max.Retrans’, the
 endpoint SHOULD consider the peer endpoint unreachable and SHALL stop
 transmitting any more data to it (and thus the association enters the
 CLOSED state). In addition, the endpoint SHOULD report the failure
 to the upper layer and optionally report back all outstanding user
 data remaining in its outbound queue. The association is
 automatically closed when the peer endpoint becomes unreachable.

 The counter used for endpoint failure detection MUST be reset each
 time a DATA chunk sent to that peer endpoint is acknowledged (by the
 reception of a SACK chunk). When a HEARTBEAT ACK chunk is received
 from the peer endpoint, the counter SHOULD also be reset. The
 receiver of the HEARTBEAT ACK chunk MAY choose not to clear the
 counter if there is outstanding data on the association. This allows
 for handling the possible difference in reachability based on DATA
 chunks and HEARTBEAT chunks.

8.2. Path Failure Detection

 When its peer endpoint is multi-homed, an endpoint SHOULD keep an
 error counter for each of the destination transport addresses of the
 peer endpoint.

Stewart, et al. Expires 9 August 2022 [Page 105]

Internet-Draft Stream Control Transmission Protocol February 2022

 Each time the T3-rtx timer expires on any address, or when a
 HEARTBEAT chunk sent to an idle address is not acknowledged within an
 RTO, the error counter of that destination address will be
 incremented. When the value in the error counter exceeds the
 protocol parameter ’Path.Max.Retrans’ of that destination address,
 the endpoint SHOULD mark the destination transport address as
 inactive, and a notification SHOULD be sent to the upper layer.

 When an outstanding TSN is acknowledged or a HEARTBEAT chunk sent to
 that address is acknowledged with a HEARTBEAT ACK chunk, the endpoint
 SHOULD clear the error counter of the destination transport address
 to which the DATA chunk was last sent (or HEARTBEAT chunk was sent)
 and SHOULD also report to the upper layer when an inactive
 destination address is marked as active. When the peer endpoint is
 multi-homed and the last chunk sent to it was a retransmission to an
 alternate address, there exists an ambiguity as to whether or not the
 acknowledgement could be credited to the address of the last chunk
 sent. However, this ambiguity does not seem to have significant
 consequences for SCTP behavior. If this ambiguity is undesirable,
 the transmitter MAY choose not to clear the error counter if the last
 chunk sent was a retransmission.

 Note: When configuring the SCTP endpoint, the user ought to avoid
 having the value of ’Association.Max.Retrans’ larger than the
 summation of the ’Path.Max.Retrans’ of all the destination addresses
 for the remote endpoint. Otherwise, all the destination addresses
 might become inactive while the endpoint still considers the peer
 endpoint reachable. When this condition occurs, how SCTP chooses to
 function is implementation specific.

 When the primary path is marked inactive (due to excessive
 retransmissions, for instance), the sender MAY automatically transmit
 new packets to an alternate destination address if one exists and is
 active. If more than one alternate address is active when the
 primary path is marked inactive, only ONE transport address SHOULD be
 chosen and used as the new destination transport address.

8.3. Path Heartbeat

 By default, an SCTP endpoint SHOULD monitor the reachability of the
 idle destination transport address(es) of its peer by sending a
 HEARTBEAT chunk periodically to the destination transport
 address(es). The sending of HEARTBEAT chunks MAY begin upon reaching
 the ESTABLISHED state and is discontinued after sending either a
 SHUTDOWN chunk or SHUTDOWN ACK chunk. A receiver of a HEARTBEAT
 chunks MUST respond to a HEARTBEAT chunk with a HEARTBEAT ACK chunk
 after entering the COOKIE-ECHOED state (sender of the INIT chunk) or
 the ESTABLISHED state (receiver of the INIT chunk), up until reaching

Stewart, et al. Expires 9 August 2022 [Page 106]

Internet-Draft Stream Control Transmission Protocol February 2022

 the SHUTDOWN-SENT state (sender of the SHUTDOWN chunk) or the
 SHUTDOWN-ACK-SENT state (receiver of the SHUTDOWN chunk).

 A destination transport address is considered "idle" if no new chunk
 that can be used for updating path RTT (usually including first
 transmission DATA, INIT, COOKIE ECHO, or HEARTBEAT chunks, etc.) and
 no HEARTBEAT chunk has been sent to it within the current heartbeat
 period of that address. This applies to both active and inactive
 destination addresses.

 The upper layer can optionally initiate the following functions:

 A) Disable heartbeat on a specific destination transport address of
 a given association,

 B) Change the ’HB.interval’,

 C) Re-enable heartbeat on a specific destination transport address
 of a given association, and

 D) Request the sending of an on-demand HEARTBEAT chunk on a specific
 destination transport address of a given association.

 The endpoint SHOULD increment the respective error counter of the
 destination transport address each time a HEARTBEAT chunk is sent to
 that address and not acknowledged within one RTO.

 When the value of this counter exceeds the protocol parameter
 ’Path.Max.Retrans’, the endpoint SHOULD mark the corresponding
 destination address as inactive if it is not so marked and SHOULD
 also report to the upper layer the change in reachability of this
 destination address. After this, the endpoint SHOULD continue
 sending HEARTBEAT chunks on this destination address but SHOULD stop
 increasing the counter.

 The sender of the HEARTBEAT chunk SHOULD include in the Heartbeat
 Information field of the chunk the current time when the packet is
 sent and the destination address to which the packet is sent.

 Implementation Note: An alternative implementation of the heartbeat
 mechanism that can be used is to increment the error counter variable
 every time a HEARTBEAT chunk is sent to a destination. Whenever a
 HEARTBEAT ACK chunk arrives, the sender SHOULD clear the error
 counter of the destination that the HEARTBEAT chunk was sent to.
 This in effect would clear the previously stroked error (and any
 other error counts as well).

Stewart, et al. Expires 9 August 2022 [Page 107]

Internet-Draft Stream Control Transmission Protocol February 2022

 The receiver of the HEARTBEAT chunk SHOULD immediately respond with a
 HEARTBEAT ACK chunk that contains the Heartbeat Information TLV,
 together with any other received TLVs, copied unchanged from the
 received HEARTBEAT chunk.

 Upon the receipt of the HEARTBEAT ACK chunk, the sender of the
 HEARTBEAT chunk SHOULD clear the error counter of the destination
 transport address to which the HEARTBEAT chunk was sent and mark the
 destination transport address as active if it is not so marked. The
 endpoint SHOULD report to the upper layer when an inactive
 destination address is marked as active due to the reception of the
 latest HEARTBEAT ACK chunk. The receiver of the HEARTBEAT ACK chunk
 SHOULD also clear the association overall error count (as defined in
 Section 8.1).

 The receiver of the HEARTBEAT ACK chunk SHOULD also perform an RTT
 measurement for that destination transport address using the time
 value carried in the HEARTBEAT ACK chunk.

 On an idle destination address that is allowed to heartbeat, it is
 RECOMMENDED that a HEARTBEAT chunk is sent once per RTO of that
 destination address plus the protocol parameter ’HB.interval’, with
 jittering of +/- 50% of the RTO value, and exponential backoff of the
 RTO if the previous HEARTBEAT chunk is unanswered.

 A primitive is provided for the SCTP user to change the ’HB.interval’
 and turn on or off the heartbeat on a given destination address. The
 ’HB.interval’ set by the SCTP user is added to the RTO of that
 destination (including any exponential backoff). Only one heartbeat
 SHOULD be sent each time the heartbeat timer expires (if multiple
 destinations are idle). It is an implementation decision on how to
 choose which of the candidate idle destinations to heartbeat to (if
 more than one destination is idle).

 When tuning the ’HB.interval’, there is a side effect that SHOULD be
 taken into account. When this value is increased, i.e., the time
 between the sending of HEARTBEAT chunks is longer, the detection of
 lost ABORT chunks takes longer as well. If a peer endpoint sends an
 ABORT chunk for any reason and the ABORT chunk is lost, the local
 endpoint will only discover the lost ABORT chunk by sending a DATA
 chunk or HEARTBEAT chunk (thus causing the peer to send another ABORT
 chunk). This is to be considered when tuning the heartbeat timer.
 If the sending of HEARTBEAT chunks is disabled, only sending DATA
 chunks to the association will discover a lost ABORT chunk from the
 peer.

Stewart, et al. Expires 9 August 2022 [Page 108]

Internet-Draft Stream Control Transmission Protocol February 2022

8.4. Handle "Out of the Blue" Packets

 An SCTP packet is called an "out of the blue" (OOTB) packet if it is
 correctly formed (i.e., passed the receiver’s CRC32c check; see
 Section 6.8), but the receiver is not able to identify the
 association to which this packet belongs.

 The receiver of an OOTB packet does the following:

 1) If the OOTB packet is to or from a non-unicast address, a
 receiver SHOULD silently discard the packet. Otherwise,

 2) If the OOTB packet contains an ABORT chunk, the receiver MUST
 silently discard the OOTB packet and take no further action.
 Otherwise,

 3) If the packet contains an INIT chunk with a Verification Tag set
 to 0, it SHOULD be processed as described in Section 5.1. If,
 for whatever reason, the INIT chunk cannot be processed normally
 and an ABORT chunk has to be sent in response, the Verification
 Tag of the packet containing the ABORT chunk MUST be the Initiate
 Tag of the received INIT chunk, and the T bit of the ABORT chunk
 has to be set to 0, indicating that the Verification Tag is not
 reflected. Otherwise,

 4) If the packet contains a COOKIE ECHO chunk as the first chunk, it
 MUST be processed as described in Section 5.1. Otherwise,

 5) If the packet contains a SHUTDOWN ACK chunk, the receiver SHOULD
 respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE
 chunk. When sending the SHUTDOWN COMPLETE chunk, the receiver of
 the OOTB packet MUST fill in the Verification Tag field of the
 outbound packet with the Verification Tag received in the
 SHUTDOWN ACK chunk and set the T bit in the Chunk Flags to
 indicate that the Verification Tag is reflected. Otherwise,

 6) If the packet contains a SHUTDOWN COMPLETE chunk, the receiver
 SHOULD silently discard the packet and take no further action.
 Otherwise,

 7) If the packet contains a ERROR chunk with the "Stale Cookie"
 error cause or a COOKIE ACK chunk, the SCTP packet SHOULD be
 silently discarded. Otherwise,

 8) The receiver SHOULD respond to the sender of the OOTB packet with
 an ABORT chunk. When sending the ABORT chunk, the receiver of
 the OOTB packet MUST fill in the Verification Tag field of the
 outbound packet with the value found in the Verification Tag

Stewart, et al. Expires 9 August 2022 [Page 109]

Internet-Draft Stream Control Transmission Protocol February 2022

 field of the OOTB packet and set the T bit in the Chunk Flags to
 indicate that the Verification Tag is reflected. After sending
 this ABORT chunk, the receiver of the OOTB packet MUST discard
 the OOTB packet and MUST NOT take any further action.

8.5. Verification Tag

 The Verification Tag rules defined in this section apply when sending
 or receiving SCTP packets that do not contain an INIT, SHUTDOWN
 COMPLETE, COOKIE ECHO (see Section 5.1), ABORT, or SHUTDOWN ACK
 chunk. The rules for sending and receiving SCTP packets containing
 one of these chunk types are discussed separately in Section 8.5.1.

 When sending an SCTP packet, the endpoint MUST fill in the
 Verification Tag field of the outbound packet with the tag value in
 the Initiate Tag parameter of the INIT or INIT ACK chunk received
 from its peer.

 When receiving an SCTP packet, the endpoint MUST ensure that the
 value in the Verification Tag field of the received SCTP packet
 matches its own tag. If the received Verification Tag value does not
 match the receiver’s own tag value, the receiver MUST silently
 discard the packet and MUST NOT process it any further except for
 those cases listed in Section 8.5.1 below.

8.5.1. Exceptions in Verification Tag Rules

 A) Rules for packets carrying an INIT chunk:
 * The sender MUST set the Verification Tag of the packet to 0.

 * When an endpoint receives an SCTP packet with the Verification
 Tag set to 0, it SHOULD verify that the packet contains only an
 INIT chunk. Otherwise, the receiver MUST silently discard the
 packet.

 B) Rules for packets carrying an ABORT chunk:
 * The endpoint MUST always fill in the Verification Tag field of
 the outbound packet with the destination endpoint’s tag value,
 if it is known.

 * If the ABORT chunk is sent in response to an OOTB packet, the
 endpoint MUST follow the procedure described in Section 8.4.

 * The receiver of an ABORT chunk MUST accept the packet if the
 Verification Tag field of the packet matches its own tag and
 the T bit is not set OR if it is set to its peer’s tag and the
 T bit is set in the Chunk Flags. Otherwise, the receiver MUST
 silently discard the packet and take no further action.

Stewart, et al. Expires 9 August 2022 [Page 110]

Internet-Draft Stream Control Transmission Protocol February 2022

 C) Rules for packets carrying a SHUTDOWN COMPLETE chunk:
 * When sending a SHUTDOWN COMPLETE chunk, if the receiver of the
 SHUTDOWN ACK chunk has a TCB, then the destination endpoint’s
 tag MUST be used, and the T bit MUST NOT be set. Only where no
 TCB exists SHOULD the sender use the Verification Tag from the
 SHUTDOWN ACK chunk, and MUST set the T bit.

 * The receiver of a SHUTDOWN COMPLETE chunk accepts the packet if
 the Verification Tag field of the packet matches its own tag
 and the T bit is not set OR if it is set to its peer’s tag and
 the T bit is set in the Chunk Flags. Otherwise, the receiver
 MUST silently discard the packet and take no further action.
 An endpoint MUST ignore the SHUTDOWN COMPLETE chunk if it is
 not in the SHUTDOWN-ACK-SENT state.

 D) Rules for packets carrying a COOKIE ECHO chunk:
 * When sending a COOKIE ECHO chunk, the endpoint MUST use the
 value of the Initiate Tag received in the INIT ACK chunk.

 * The receiver of a COOKIE ECHO chunk follows the procedures in
 Section 5.

 E) Rules for packets carrying a SHUTDOWN ACK chunk:
 * If the receiver is in COOKIE-ECHOED or COOKIE-WAIT state the
 procedures in Section 8.4 SHOULD be followed; in other words,
 it is treated as an OOTB packet.

9. Termination of Association

 An endpoint SHOULD terminate its association when it exits from
 service. An association can be terminated by either abort or
 shutdown. An abort of an association is abortive by definition in
 that any data pending on either end of the association is discarded
 and not delivered to the peer. A shutdown of an association is
 considered a graceful close where all data in queue by either
 endpoint is delivered to the respective peers. However, in the case
 of a shutdown, SCTP does not support a half-open state (like TCP)
 wherein one side might continue sending data while the other end is
 closed. When either endpoint performs a shutdown, the association on
 each peer will stop accepting new data from its user and only deliver
 data in queue at the time of sending or receiving the SHUTDOWN chunk.

Stewart, et al. Expires 9 August 2022 [Page 111]

Internet-Draft Stream Control Transmission Protocol February 2022

9.1. Abort of an Association

 When an endpoint decides to abort an existing association, it MUST
 send an ABORT chunk to its peer endpoint. The sender MUST fill in
 the peer’s Verification Tag in the outbound packet and MUST NOT
 bundle any DATA chunk with the ABORT chunk. If the association is
 aborted on request of the upper layer, a "User-Initiated Abort" error
 cause (see Section 3.3.10.12) SHOULD be present in the ABORT chunk.

 An endpoint MUST NOT respond to any received packet that contains an
 ABORT chunk (also see Section 8.4).

 An endpoint receiving an ABORT chunk MUST apply the special
 Verification Tag check rules described in Section 8.5.1.

 After checking the Verification Tag, the receiving endpoint MUST
 remove the association from its record and SHOULD report the
 termination to its upper layer. If a "User-Initiated Abort" error
 cause is present in the ABORT chunk, the Upper Layer Abort Reason
 SHOULD be made available to the upper layer.

9.2. Shutdown of an Association

 Using the SHUTDOWN primitive (see Section 11.1), the upper layer of
 an endpoint in an association can gracefully close the association.
 This will allow all outstanding DATA chunks from the peer of the
 shutdown initiator to be delivered before the association terminates.

 Upon receipt of the SHUTDOWN primitive from its upper layer, the
 endpoint enters the SHUTDOWN-PENDING state and remains there until
 all outstanding data has been acknowledged by its peer. The endpoint
 accepts no new data from its upper layer, but retransmits data to the
 peer endpoint if necessary to fill gaps.

 Once all its outstanding data has been acknowledged, the endpoint
 sends a SHUTDOWN chunk to its peer including in the Cumulative TSN
 Ack field the last sequential TSN it has received from the peer. It
 SHOULD then start the T2-shutdown timer and enter the SHUTDOWN-SENT
 state. If the timer expires, the endpoint MUST resend the SHUTDOWN
 chunk with the updated last sequential TSN received from its peer.

 The rules in Section 6.3 MUST be followed to determine the proper
 timer value for T2-shutdown. To indicate any gaps in TSN, the
 endpoint MAY also bundle a SACK chunk with the SHUTDOWN chunk in the
 same SCTP packet.

Stewart, et al. Expires 9 August 2022 [Page 112]

Internet-Draft Stream Control Transmission Protocol February 2022

 An endpoint SHOULD limit the number of retransmissions of the
 SHUTDOWN chunk to the protocol parameter ’Association.Max.Retrans’.
 If this threshold is exceeded, the endpoint SHOULD destroy the TCB
 and SHOULD report the peer endpoint unreachable to the upper layer
 (and thus the association enters the CLOSED state). The reception of
 any packet from its peer (i.e., as the peer sends all of its queued
 DATA chunks) SHOULD clear the endpoint’s retransmission count and
 restart the T2-shutdown timer, giving its peer ample opportunity to
 transmit all of its queued DATA chunks that have not yet been sent.

 Upon reception of the SHUTDOWN chunk, the peer endpoint does the
 following:

 * enter the SHUTDOWN-RECEIVED state,

 * stop accepting new data from its SCTP user, and

 * verify, by checking the Cumulative TSN Ack field of the chunk,
 that all its outstanding DATA chunks have been received by the
 SHUTDOWN chunk sender.

 Once an endpoint has reached the SHUTDOWN-RECEIVED state, it MUST
 ignore ULP shutdown requests but MUST continue responding to SHUTDOWN
 chunks from its peer.

 If there are still outstanding DATA chunks left, the SHUTDOWN chunk
 receiver MUST continue to follow normal data transmission procedures
 defined in Section 6, until all outstanding DATA chunks are
 acknowledged; however, the SHUTDOWN chunk receiver MUST NOT accept
 new data from its SCTP user.

 While in the SHUTDOWN-SENT state, the SHUTDOWN chunk sender MUST
 immediately respond to each received packet containing one or more
 DATA chunks with a SHUTDOWN chunk and restart the T2-shutdown timer.
 If a SHUTDOWN chunk by itself cannot acknowledge all of the received
 DATA chunks (i.e., there are TSNs that can be acknowledged that are
 larger than the cumulative TSN, and thus gaps exist in the TSN
 sequence), or if duplicate TSNs have been received, then a SACK chunk
 MUST also be sent.

 The sender of the SHUTDOWN chunk MAY also start an overall guard
 timer T5-shutdown-guard to bound the overall time for the shutdown
 sequence. At the expiration of this timer, the sender SHOULD abort
 the association by sending an ABORT chunk. If the T5-shutdown-guard
 timer is used, it SHOULD be set to the RECOMMENDED value of 5 times
 ’RTO.Max’.

Stewart, et al. Expires 9 August 2022 [Page 113]

Internet-Draft Stream Control Transmission Protocol February 2022

 If the receiver of the SHUTDOWN chunk has no more outstanding DATA
 chunks, the SHUTDOWN chunk receiver MUST send a SHUTDOWN ACK chunk
 and start a T2-shutdown timer of its own, entering the SHUTDOWN-ACK-
 SENT state. If the timer expires, the endpoint MUST resend the
 SHUTDOWN ACK chunk.

 The sender of the SHUTDOWN ACK chunk SHOULD limit the number of
 retransmissions of the SHUTDOWN ACK chunk to the protocol parameter
 ’Association.Max.Retrans’. If this threshold is exceeded, the
 endpoint SHOULD destroy the TCB and SHOULD report the peer endpoint
 unreachable to the upper layer (and thus the association enters the
 CLOSED state).

 Upon the receipt of the SHUTDOWN ACK chunk, the sender of the
 SHUTDOWN chunk MUST stop the T2-shutdown timer, send a SHUTDOWN
 COMPLETE chunk to its peer, and remove all record of the association.

 Upon reception of the SHUTDOWN COMPLETE chunk, the endpoint verifies
 that it is in the SHUTDOWN-ACK-SENT state; if it is not, the chunk
 SHOULD be discarded. If the endpoint is in the SHUTDOWN-ACK-SENT
 state, the endpoint SHOULD stop the T2-shutdown timer and remove all
 knowledge of the association (and thus the association enters the
 CLOSED state).

 An endpoint SHOULD ensure that all its outstanding DATA chunks have
 been acknowledged before initiating the shutdown procedure.

 An endpoint SHOULD reject any new data request from its upper layer
 if it is in the SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED,
 or SHUTDOWN-ACK-SENT state.

 If an endpoint is in the SHUTDOWN-ACK-SENT state and receives an INIT
 chunk (e.g., if the SHUTDOWN COMPLETE chunk was lost) with source and
 destination transport addresses (either in the IP addresses or in the
 INIT chunk) that belong to this association, it SHOULD discard the
 INIT chunk and retransmit the SHUTDOWN ACK chunk.

 Note: Receipt of a packet containing an INIT chunk with the same
 source and destination IP addresses as used in transport addresses
 assigned to an endpoint but with a different port number indicates
 the initialization of a separate association.

 The sender of the INIT or COOKIE ECHO chunk SHOULD respond to the
 receipt of a SHUTDOWN ACK chunk with a stand-alone SHUTDOWN COMPLETE
 chunk in an SCTP packet with the Verification Tag field of its common
 header set to the same tag that was received in the packet containing
 the SHUTDOWN ACK chunk. This is considered an OOTB packet as defined
 in Section 8.4. The sender of the INIT chunk lets T1-init continue

Stewart, et al. Expires 9 August 2022 [Page 114]

Internet-Draft Stream Control Transmission Protocol February 2022

 running and remains in the COOKIE-WAIT or COOKIE-ECHOED state.
 Normal T1-init timer expiration will cause the INIT or COOKIE chunk
 to be retransmitted and thus start a new association.

 If a SHUTDOWN chunk is received in the COOKIE-WAIT or COOKIE ECHOED
 state, the SHUTDOWN chunk SHOULD be silently discarded.

 If an endpoint is in the SHUTDOWN-SENT state and receives a SHUTDOWN
 chunk from its peer, the endpoint SHOULD respond immediately with a
 SHUTDOWN ACK chunk to its peer, and move into the SHUTDOWN-ACK-SENT
 state restarting its T2-shutdown timer.

 If an endpoint is in the SHUTDOWN-ACK-SENT state and receives a
 SHUTDOWN ACK, it MUST stop the T2-shutdown timer, send a SHUTDOWN
 COMPLETE chunk to its peer, and remove all record of the association.

10. ICMP Handling

 Whenever an ICMP message is received by an SCTP endpoint, the
 following procedures MUST be followed to ensure proper utilization of
 the information being provided by layer 3.

 ICMP1) An implementation MAY ignore all ICMPv4 messages where the
 type field is not set to "Destination Unreachable".

 ICMP2) An implementation MAY ignore all ICMPv6 messages where the
 type field is not "Destination Unreachable", "Parameter
 Problem", or "Packet Too Big".

 ICMP3) An implementation SHOULD ignore any ICMP messages where the
 code indicates "Port Unreachable".

 ICMP4) An implementation MAY ignore all ICMPv6 messages of type
 "Parameter Problem" if the code is not "Unrecognized Next
 Header Type Encountered".

 ICMP5) An implementation MUST use the payload of the ICMP message
 (v4 or v6) to locate the association that sent the message to
 which ICMP is responding. If the association cannot be
 found, an implementation SHOULD ignore the ICMP message.

Stewart, et al. Expires 9 August 2022 [Page 115]

Internet-Draft Stream Control Transmission Protocol February 2022

 ICMP6) An implementation MUST validate that the Verification Tag
 contained in the ICMP message matches the Verification Tag of
 the peer. If the Verification Tag is not 0 and does not
 match, discard the ICMP message. If it is 0 and the ICMP
 message contains enough bytes to verify that the chunk type
 is an INIT chunk and that the Initiate Tag matches the tag of
 the peer, continue with ICMP7. If the ICMP message is too
 short or the chunk type or the Initiate Tag does not match,
 silently discard the packet.

 ICMP7) If the ICMP message is either an ICMPv6 message of type
 "Packet Too Big" or an ICMPv4 message of type "Destination
 Unreachable" and code "Fragmentation Needed", an
 implementation SHOULD process this information as defined for
 PMTU discovery.

 ICMP8) If the ICMP code is an "Unrecognized Next Header Type
 Encountered" or a "Protocol Unreachable", an implementation
 MUST treat this message as an abort with the T bit set if it
 does not contain an INIT chunk. If it does contain an INIT
 chunk and the association is in the COOKIE-WAIT state, handle
 the ICMP message like an ABORT chunk.

 ICMP9) If the ICMP type is "Destination Unreachable", the
 implementation MAY move the destination to the unreachable
 state or, alternatively, increment the path error counter.
 SCTP MAY provide information to the upper layer indicating
 the reception of ICMP messages when reporting a network
 status change.

 These procedures differ from [RFC1122] and from its requirements for
 processing of port-unreachable messages and the requirements that an
 implementation MUST abort associations in response to a "protocol
 unreachable" message. Port-unreachable messages are not processed,
 since an implementation will send an ABORT chunk, not a port
 unreachable. The stricter handling of the "protocol unreachable"
 message is due to security concerns for hosts that do not support
 SCTP.

11. Interface with Upper Layer

 The Upper Layer Protocols (ULPs) request services by passing
 primitives to SCTP and receive notifications from SCTP for various
 events.

 The primitives and notifications described in this section can be
 used as a guideline for implementing SCTP. The following functional
 description of ULP interface primitives is shown for illustrative

Stewart, et al. Expires 9 August 2022 [Page 116]

Internet-Draft Stream Control Transmission Protocol February 2022

 purposes. Different SCTP implementations can have different ULP
 interfaces. However, all SCTP implementations are expected to
 provide a certain minimum set of services to guarantee that all SCTP
 implementations can support the same protocol hierarchy.

 Please note that this section is informational only.

 [RFC6458] and the Socket API Considerations section of [RFC7053]
 define an extension of the socket API for SCTP as described in this
 document.

11.1. ULP-to-SCTP

 The following sections functionally characterize a ULP/SCTP
 interface. The notation used is similar to most procedure or
 function calls in high-level languages.

 The ULP primitives described below specify the basic functions that
 SCTP performs to support inter-process communication. Individual
 implementations define their own exact format, and provide
 combinations or subsets of the basic functions in single calls.

11.1.1. Initialize

 INITIALIZE ([local port],[local eligible address list])
 -> local SCTP instance name

 This primitive allows SCTP to initialize its internal data structures
 and allocate necessary resources for setting up its operation
 environment. Once SCTP is initialized, ULP can communicate directly
 with other endpoints without re-invoking this primitive.

 SCTP will return a local SCTP instance name to the ULP.

 Mandatory attributes:
 None.

 Optional attributes:
 local port: SCTP port number, if ULP wants it to be specified.

 local eligible address list: an address list that the local SCTP
 endpoint binds. By default, if an address list is not
 included, all IP addresses assigned to the host are used by the
 local endpoint.

Stewart, et al. Expires 9 August 2022 [Page 117]

Internet-Draft Stream Control Transmission Protocol February 2022

 Implementation Note: If this optional attribute is supported by an
 implementation, it will be the responsibility of the implementation
 to enforce that the IP source address field of any SCTP packets sent
 by this endpoint contains one of the IP addresses indicated in the
 local eligible address list.

11.1.2. Associate

 ASSOCIATE(local SCTP instance name,
 initial destination transport addr list, outbound stream count)
 -> association id [,destination transport addr list]
 [,outbound stream count]

 This primitive allows the upper layer to initiate an association to a
 specific peer endpoint.

 The peer endpoint is specified by one or more of the transport
 addresses that defines the endpoint (see Section 2.3). If the local
 SCTP instance has not been initialized, the ASSOCIATE is considered
 an error.

 An association id, which is a local handle to the SCTP association,
 will be returned on successful establishment of the association. If
 SCTP is not able to open an SCTP association with the peer endpoint,
 an error is returned.

 Other association parameters can be returned, including the complete
 destination transport addresses of the peer as well as the outbound
 stream count of the local endpoint. One of the transport addresses
 from the returned destination addresses will be selected by the local
 endpoint as default primary path for sending SCTP packets to this
 peer. The returned "destination transport addr list" can be used by
 the ULP to change the default primary path or to force sending a
 packet to a specific transport address.

 Implementation Note: If ASSOCIATE primitive is implemented as a
 blocking function call, the ASSOCIATE primitive can return
 association parameters in addition to the association id upon
 successful establishment. If ASSOCIATE primitive is implemented as a
 non-blocking call, only the association id is returned and
 association parameters are passed using the COMMUNICATION UP
 notification.

 Mandatory attributes:
 local SCTP instance name: obtained from the INITIALIZE operation.

 initial destination transport addr list: a non-empty list of

Stewart, et al. Expires 9 August 2022 [Page 118]

Internet-Draft Stream Control Transmission Protocol February 2022

 transport addresses of the peer endpoint with which the
 association is to be established.

 outbound stream count: the number of outbound streams the ULP
 would like to open towards this peer endpoint.

 Optional attributes:
 None.

11.1.3. Shutdown

 SHUTDOWN(association id) -> result

 Gracefully closes an association. Any locally queued user data will
 be delivered to the peer. The association will be terminated only
 after the peer acknowledges all the SCTP packets sent. A success
 code will be returned on successful termination of the association.
 If attempting to terminate the association results in a failure, an
 error code is returned.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 Optional attributes:
 None.

11.1.4. Abort

 ABORT(association id [, Upper Layer Abort Reason]) -> result

 Ungracefully closes an association. Any locally queued user data
 will be discarded, and an ABORT chunk is sent to the peer. A success
 code will be returned on successful abort of the association. If
 attempting to abort the association results in a failure, an error
 code is returned.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 Optional attributes:
 Upper Layer Abort Reason: reason of the abort to be passed to the
 peer.

11.1.5. Send

Stewart, et al. Expires 9 August 2022 [Page 119]

Internet-Draft Stream Control Transmission Protocol February 2022

 SEND(association id, buffer address, byte count [,context]
 [,stream id] [,life time] [,destination transport address]
 [,unordered flag] [,no-bundle flag] [,payload protocol-id]
 [,sack-immediately flag]) -> result

 This is the main method to send user data via SCTP.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 buffer address: the location where the user message to be
 transmitted is stored.

 byte count: the size of the user data in number of bytes.

 Optional attributes:
 context: an optional information provided that will be carried in
 the sending failure notification to the ULP if the
 transportation of this user message fails.

 stream id: to indicate which stream to send the data on. If not
 specified, stream 0 will be used.

 life time: specifies the life time of the user data. The user
 data will not be sent by SCTP after the life time expires.
 This parameter can be used to avoid efforts to transmit stale
 user messages. SCTP notifies the ULP if the data cannot be
 initiated to transport (i.e., sent to the destination via
 SCTP’s SEND primitive) within the life time variable. However,
 the user data will be transmitted if SCTP has attempted to
 transmit a chunk before the life time expired.

 Implementation Note: In order to better support the data life
 time option, the transmitter can hold back the assigning of the
 TSN number to an outbound DATA chunk to the last moment. And,
 for implementation simplicity, once a TSN number has been
 assigned the sender considers the send of this DATA chunk as
 committed, overriding any life time option attached to the DATA
 chunk.

 destination transport address: specified as one of the
 destination transport addresses of the peer endpoint to which
 this packet is sent. Whenever possible, SCTP uses this
 destination transport address for sending the packets, instead
 of the current primary path.

 unordered flag: this flag, if present, indicates that the user

Stewart, et al. Expires 9 August 2022 [Page 120]

Internet-Draft Stream Control Transmission Protocol February 2022

 would like the data delivered in an unordered fashion to the
 peer (i.e., the U flag is set to 1 on all DATA chunks carrying
 this message).

 no-bundle flag: instructs SCTP not to delay the sending of DATA
 chunks for this user data just to allow it to be bundled with
 other outbound DATA chunks. When faced with network
 congestion, SCTP might still bundle the data, even when this
 flag is present.

 payload protocol-id: a 32-bit unsigned integer that is to be
 passed to the peer indicating the type of payload protocol data
 being transmitted. Note that the upper layer is responsible
 for the host to network byte order conversion of this field,
 which is passed by SCTP as 4 bytes of opaque data.

 sack-immediately flag: set the I bit on the last DATA chunk used
 for the user message to be transmitted.

11.1.6. Set Primary

 SETPRIMARY(association id, destination transport address,
 [source transport address]) -> result

 Instructs the local SCTP to use the specified destination transport
 address as the primary path for sending packets.

 The result of attempting this operation is returned. If the
 specified destination transport address is not present in the
 "destination transport address list" returned earlier in an associate
 command or communication up notification, an error is returned.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 destination transport address: specified as one of the transport
 addresses of the peer endpoint, which is used as the primary
 address for sending packets. This overrides the current
 primary address information maintained by the local SCTP
 endpoint.

 Optional attributes:
 source transport address: optionally, some implementations can
 allow you to set the default source address placed in all
 outgoing IP datagrams.

11.1.7. Receive

Stewart, et al. Expires 9 August 2022 [Page 121]

Internet-Draft Stream Control Transmission Protocol February 2022

 RECEIVE(association id, buffer address, buffer size [,stream id])
 -> byte count [,transport address] [,stream id]
 [,stream sequence number] [,partial flag] [,payload protocol-id]

 This primitive reads the first user message in the SCTP in-queue into
 the buffer specified by ULP, if there is one available. The size of
 the message read, in bytes, will be returned. It might, depending on
 the specific implementation, also return other information such as
 the sender’s address, the stream id on which it is received, whether
 there are more messages available for retrieval, etc. For ordered
 messages, their Stream Sequence Number might also be returned.

 Depending upon the implementation, if this primitive is invoked when
 no message is available the implementation returns an indication of
 this condition or blocks the invoking process until data does become
 available.

 Mandatory attributes:
 association id: local handle to the SCTP association

 buffer address: the memory location indicated by the ULP to store
 the received message.

 buffer size: the maximum size of data to be received, in bytes.

 Optional attributes:
 stream id: to indicate which stream to receive the data on.

 stream sequence number: the Stream Sequence Number assigned by
 the sending SCTP peer.

 partial flag: if this returned flag is set to 1, then this
 primitive contains a partial delivery of the whole message.
 When this flag is set, the stream id and stream sequence number
 accompanies this primitive. When this flag is set to 0, it
 indicates that no more deliveries will be received for this
 stream sequence number.

 payload protocol-id: a 32-bit unsigned integer that is received
 from the peer indicating the type of payload protocol of the
 received data. Note that the upper layer is responsible for
 the host to network byte order conversion of this field, which
 is passed by SCTP as 4 bytes of opaque data.

11.1.8. Status

 STATUS(association id) -> status data

Stewart, et al. Expires 9 August 2022 [Page 122]

Internet-Draft Stream Control Transmission Protocol February 2022

 This primitive returns a data block containing the following
 information:

 * association connection state,

 * destination transport address list,

 * destination transport address reachability states,

 * current receiver window size,

 * current congestion window sizes,

 * number of unacknowledged DATA chunks,

 * number of DATA chunks pending receipt,

 * primary path,

 * most recent SRTT on primary path,

 * RTO on primary path,

 * SRTT and RTO on other destination addresses, etc.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 Optional attributes:
 None.

11.1.9. Change Heartbeat

 CHANGE HEARTBEAT(association id, destination transport address,
 new state [,interval]) -> result

 Instructs the local endpoint to enable or disable heartbeat on the
 specified destination transport address.

 The result of attempting this operation is returned.

 Note: Even when enabled, heartbeat will not take place if the
 destination transport address is not idle.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 destination transport address: specified as one of the transport

Stewart, et al. Expires 9 August 2022 [Page 123]

Internet-Draft Stream Control Transmission Protocol February 2022

 addresses of the peer endpoint.

 new state: the new state of heartbeat for this destination
 transport address (either enabled or disabled).

 Optional attributes:
 interval: if present, indicates the frequency of the heartbeat if
 this is to enable heartbeat on a destination transport address.
 This value is added to the RTO of the destination transport
 address. This value, if present, affects all destinations.

11.1.10. Request Heartbeat

 REQUESTHEARTBEAT(association id, destination transport address)
 -> result

 Instructs the local endpoint to perform a heartbeat on the specified
 destination transport address of the given association. The returned
 result indicates whether the transmission of the HEARTBEAT chunk
 chunk to the destination address is successful.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 destination transport address: the transport address of the
 association on which a heartbeat is issued.

 Optional attributes:
 None.

11.1.11. Get SRTT Report

 GETSRTTREPORT(association id, destination transport address)
 -> srtt result

 Instructs the local SCTP to report the current SRTT measurement on
 the specified destination transport address of the given association.
 The returned result can be an integer containing the most recent SRTT
 in milliseconds.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 destination transport address: the transport address of the
 association on which the SRTT measurement is to be reported.

 Optional attributes:
 None.

Stewart, et al. Expires 9 August 2022 [Page 124]

Internet-Draft Stream Control Transmission Protocol February 2022

11.1.12. Set Failure Threshold

 SETFAILURETHRESHOLD(association id, destination transport address,
 failure threshold) -> result

 This primitive allows the local SCTP to customize the reachability
 failure detection threshold ’Path.Max.Retrans’ for the specified
 destination address. Note that this can also be done using the
 SETPROTOCOLPARAMETERS primitive (Section 11.1.13).

 Mandatory attributes:
 association id: local handle to the SCTP association.

 destination transport address: the transport address of the
 association on which the failure detection threshold is to be
 set.

 failure threshold: the new value of ’Path.Max.Retrans’ for the
 destination address.

 Optional attributes:
 None.

11.1.13. Set Protocol Parameters

 SETPROTOCOLPARAMETERS(association id,
 [destination transport address,] protocol parameter list)
 -> result

 This primitive allows the local SCTP to customize the protocol
 parameters.

 Mandatory attributes:
 association id: local handle to the SCTP association.

 protocol parameter list: the specific names and values of the
 protocol parameters (e.g., ’Association.Max.Retrans’ (see
 Section 16), or other parameters like the DSCP) that the SCTP
 user wishes to customize.

 Optional attributes:
 destination transport address: some of the protocol parameters
 might be set on a per destination transport address basis.

11.1.14. Receive Unsent Message

Stewart, et al. Expires 9 August 2022 [Page 125]

Internet-Draft Stream Control Transmission Protocol February 2022

 RECEIVE_UNSENT(data retrieval id, buffer address, buffer size
 [,stream id] [, stream sequence number] [,partial flag]
 [,payload protocol-id])

 This primitive reads a user message, which has never been sent, into
 the buffer specified by ULP.

 Mandatory attributes:
 data retrieval id: the identification passed to the ULP in the
 failure notification.

 buffer address: the memory location indicated by the ULP to store
 the received message.

 buffer size: the maximum size of data to be received, in bytes.

 Optional attributes:
 stream id: this is a return value that is set to indicate which
 stream the data was sent to.

 stream sequence number: this value is returned indicating the
 Stream Sequence Number that was associated with the message.

 partial flag: if this returned flag is set to 1, then this
 message is a partial delivery of the whole message. When this
 flag is set, the stream id and stream sequence number
 accompanies this primitive. When this flag is set to 0, it
 indicates that no more deliveries will be received for this
 stream sequence number.

 payload protocol-id: The 32 bit unsigned integer that was set to
 be sent to the peer indicating the type of payload protocol of
 the received data.

11.1.15. Receive Unacknowledged Message

 RECEIVE_UNACKED(data retrieval id, buffer address, buffer size,
 [,stream id] [,stream sequence number] [,partial flag]
 [,payload protocol-id])

 This primitive reads a user message, which has been sent and has not
 been acknowledged by the peer, into the buffer specified by ULP.

 Mandatory attributes:
 data retrieval id: the identification passed to the ULP in the
 failure notification.

 buffer address: the memory location indicated by the ULP to store

Stewart, et al. Expires 9 August 2022 [Page 126]

Internet-Draft Stream Control Transmission Protocol February 2022

 the received message.

 buffer size: the maximum size of data to be received, in bytes.

 Optional attributes:
 stream id: this is a return value that is set to indicate which
 stream the data was sent to.

 stream sequence number: this value is returned indicating the
 Stream Sequence Number that was associated with the message.

 partial flag: if this returned flag is set to 1, then this
 message is a partial delivery of the whole message. When this
 flag is set, the stream id and stream sequence number
 accompanies this primitive. When this flag is set to 0, it
 indicates that no more deliveries will be received for this
 stream sequence number.

 payload protocol-id: the 32-bit unsigned integer that was sent to
 the peer indicating the type of payload protocol of the
 received data.

11.1.16. Destroy SCTP Instance

 DESTROY(local SCTP instance name)

 Mandatory attributes:
 local SCTP instance name: this is the value that was passed to
 the application in the initialize primitive and it indicates
 which SCTP instance is to be destroyed.

 Optional attributes:
 None.

11.2. SCTP-to-ULP

 It is assumed that the operating system or application environment
 provides a means for the SCTP to asynchronously signal the ULP
 process. When SCTP does signal a ULP process, certain information is
 passed to the ULP.

 Implementation Note: In some cases, this might be done through a
 separate socket or error channel.

11.2.1. DATA ARRIVE Notification

 SCTP invokes this notification on the ULP when a user message is
 successfully received and ready for retrieval.

Stewart, et al. Expires 9 August 2022 [Page 127]

Internet-Draft Stream Control Transmission Protocol February 2022

 The following might optionally be passed with the notification:

 association id: local handle to the SCTP association.

 stream id: to indicate which stream the data is received on.

11.2.2. SEND FAILURE Notification

 If a message cannot be delivered, SCTP invokes this notification on
 the ULP.

 The following might optionally be passed with the notification:

 association id: local handle to the SCTP association.

 data retrieval id: an identification used to retrieve unsent and
 unacknowledged data.

 mode: Indicate whether no part of the message never has been sent or
 if at least part of it has been sent but it is not completely
 acknowledged.

 cause code: indicating the reason of the failure, e.g., size too
 large, message life time expiration, etc.

 context: optional information associated with this message (see
 Section 11.1.5).

11.2.3. NETWORK STATUS CHANGE Notification

 When a destination transport address is marked inactive (e.g., when
 SCTP detects a failure) or marked active (e.g., when SCTP detects a
 recovery), SCTP invokes this notification on the ULP.

 The following is passed with the notification:

 association id: local handle to the SCTP association.

 destination transport address: this indicates the destination
 transport address of the peer endpoint affected by the change.

 new-status: this indicates the new status.

11.2.4. COMMUNICATION UP Notification

 This notification is used when SCTP becomes ready to send or receive
 user messages, or when a lost communication to an endpoint is
 restored.

Stewart, et al. Expires 9 August 2022 [Page 128]

Internet-Draft Stream Control Transmission Protocol February 2022

 Implementation Note: If the ASSOCIATE primitive is implemented as a
 blocking function call, the association parameters are returned as a
 result of the ASSOCIATE primitive itself. In that case,
 COMMUNICATION UP notification is optional at the association
 initiator’s side.

 The following is passed with the notification:

 association id: local handle to the SCTP association.

 status: This indicates what type of event has occurred.

 destination transport address list: the complete set of transport
 addresses of the peer.

 outbound stream count: the maximum number of streams allowed to be
 used in this association by the ULP.

 inbound stream count: the number of streams the peer endpoint has
 requested with this association (this might not be the same number
 as ’outbound stream count’).

11.2.5. COMMUNICATION LOST Notification

 When SCTP loses communication to an endpoint completely (e.g., via
 Heartbeats) or detects that the endpoint has performed an abort
 operation, it invokes this notification on the ULP.

 The following is passed with the notification:

 association id: local handle to the SCTP association.

 status: this indicates what type of event has occurred; the status
 might indicate that a failure OR a normal termination event
 occurred in response to a shutdown or abort request.

 The following might be passed with the notification:

 last-acked: the TSN last acked by that peer endpoint.

 last-sent: the TSN last sent to that peer endpoint.

 Upper Layer Abort Reason: the abort reason specified in case of a
 user-initiated abort.

Stewart, et al. Expires 9 August 2022 [Page 129]

Internet-Draft Stream Control Transmission Protocol February 2022

11.2.6. COMMUNICATION ERROR Notification

 When SCTP receives an ERROR chunk from its peer and decides to notify
 its ULP, it can invoke this notification on the ULP.

 The following can be passed with the notification:

 association id: local handle to the SCTP association.

 error info: this indicates the type of error and optionally some
 additional information received through the ERROR chunk.

11.2.7. RESTART Notification

 When SCTP detects that the peer has restarted, it might send this
 notification to its ULP.

 The following can be passed with the notification:

 association id: local handle to the SCTP association.

11.2.8. SHUTDOWN COMPLETE Notification

 When SCTP completes the shutdown procedures (Section 9.2), this
 notification is passed to the upper layer.

 The following can be passed with the notification:

 association id: local handle to the SCTP association.

12. Security Considerations

12.1. Security Objectives

 As a common transport protocol designed to reliably carry time-
 sensitive user messages, such as billing or signaling messages for
 telephony services, between two networked endpoints, SCTP has the
 following security objectives.

 * availability of reliable and timely data transport services

 * integrity of the user-to-user information carried by SCTP

Stewart, et al. Expires 9 August 2022 [Page 130]

Internet-Draft Stream Control Transmission Protocol February 2022

12.2. SCTP Responses to Potential Threats

 SCTP could potentially be used in a wide variety of risk situations.
 It is important for operators of systems running SCTP to analyze
 their particular situations and decide on the appropriate counter-
 measures.

 Operators of systems running SCTP might consult [RFC2196] for
 guidance in securing their site.

12.2.1. Countering Insider Attacks

 The principles of [RFC2196] might be applied to minimize the risk of
 theft of information or sabotage by insiders. Such procedures
 include publication of security policies, control of access at the
 physical, software, and network levels, and separation of services.

12.2.2. Protecting against Data Corruption in the Network

 Where the risk of undetected errors in datagrams delivered by the
 lower-layer transport services is considered to be too great,
 additional integrity protection is required. If this additional
 protection were provided in the application layer, the SCTP header
 would remain vulnerable to deliberate integrity attacks. While the
 existing SCTP mechanisms for detection of packet replays are
 considered sufficient for normal operation, stronger protections are
 needed to protect SCTP when the operating environment contains
 significant risk of deliberate attacks from a sophisticated
 adversary.

 The SCTP Authentication extension SCTP-AUTH [RFC4895] MAY be used
 when the threat environment requires stronger integrity protections,
 but does not require confidentiality.

12.2.3. Protecting Confidentiality

 In most cases, the risk of breach of confidentiality applies to the
 signaling data payload, not to the SCTP or lower-layer protocol
 overheads. If that is true, encryption of the SCTP user data only
 might be considered. As with the supplementary checksum service,
 user data encryption MAY be performed by the SCTP user application.
 [RFC6083] MAY be used for this. Alternately, the user application
 MAY use an implementation-specific API to request that the IP
 Encapsulating Security Payload (ESP) [RFC4303] be used to provide
 confidentiality and integrity.

Stewart, et al. Expires 9 August 2022 [Page 131]

Internet-Draft Stream Control Transmission Protocol February 2022

 Particularly for mobile users, the requirement for confidentiality
 might include the masking of IP addresses and ports. In this case,
 ESP SHOULD be used instead of application-level confidentiality. If
 ESP is used to protect confidentiality of SCTP traffic, an ESP
 cryptographic transform that includes cryptographic integrity
 protection MUST be used, because if there is a confidentiality threat
 there will also be a strong integrity threat.

 Regardless of where confidentiality is provided, the Internet Key
 Exchange Protocol version 2 (IKEv2) [RFC7296] SHOULD be used for key
 management of ESP.

 Operators might consult [RFC4301] for more information on the
 security services available at and immediately above the Internet
 Protocol layer.

12.2.4. Protecting against Blind Denial-of-Service Attacks

 A blind attack is one where the attacker is unable to intercept or
 otherwise see the content of data flows passing to and from the
 target SCTP node. Blind denial-of-service attacks can take the form
 of flooding, masquerade, or improper monopolization of services.

12.2.4.1. Flooding

 The objective of flooding is to cause loss of service and incorrect
 behavior at target systems through resource exhaustion, interference
 with legitimate transactions, and exploitation of buffer-related
 software bugs. Flooding can be directed either at the SCTP node or
 at resources in the intervening IP Access Links or the Internet.
 Where the latter entities are the target, flooding will manifest
 itself as loss of network services, including potentially the breach
 of any firewalls in place.

 In general, protection against flooding begins at the equipment
 design level, where it includes measures such as:

 * avoiding commitment of limited resources before determining that
 the request for service is legitimate.

 * giving priority to completion of processing in progress over the
 acceptance of new work.

 * identification and removal of duplicate or stale queued requests
 for service.

 * not responding to unexpected packets sent to non-unicast
 addresses.

Stewart, et al. Expires 9 August 2022 [Page 132]

Internet-Draft Stream Control Transmission Protocol February 2022

 Network equipment is expected to be capable of generating an alarm
 and log if a suspicious increase in traffic occurs. The log provides
 information such as the identity of the incoming link and source
 address(es) used, which will help the network or SCTP system operator
 to take protective measures. Procedures are expected to be in place
 for the operator to act on such alarms if a clear pattern of abuse
 emerges.

 The design of SCTP is resistant to flooding attacks, particularly in
 its use of a four-way startup handshake, its use of a cookie to defer
 commitment of resources at the responding SCTP node until the
 handshake is completed, and its use of a Verification Tag to prevent
 insertion of extraneous packets into the flow of an established
 association.

 ESP might be useful in reducing the risk of certain kinds of denial-
 of-service attacks.

 Support for the Host Name Address parameter has been removed from the
 protocol. Endpoints receiving INIT or INIT ACK chunks containing the
 Host Name Address parameter MUST send an ABORT chunk in response and
 MAY include an "Unresolvable Address" error cause.

12.2.4.2. Blind Masquerade

 Masquerade can be used to deny service in several ways:

 * by tying up resources at the target SCTP node to which the
 impersonated node has limited access. For example, the target
 node can by policy permit a maximum of one SCTP association with
 the impersonated SCTP node. The masquerading attacker can attempt
 to establish an association purporting to come from the
 impersonated node so that the latter cannot do so when it requires
 it.

 * by deliberately allowing the impersonation to be detected, thereby
 provoking counter-measures that cause the impersonated node to be
 locked out of the target SCTP node.

 * by interfering with an established association by inserting
 extraneous content such as a SHUTDOWN chunk.

 SCTP reduces the risk of blind masquerade attacks through IP spoofing
 by use of the four-way startup handshake. Because the initial
 exchange is memory-less, no lockout mechanism is triggered by blind
 masquerade attacks. In addition, the packet containing the INIT ACK
 chunk with the State Cookie is transmitted back to the IP address
 from which it received the packet containing the INIT chunk. Thus,

Stewart, et al. Expires 9 August 2022 [Page 133]

Internet-Draft Stream Control Transmission Protocol February 2022

 the attacker would not receive the INIT ACK chunk containing the
 State Cookie. SCTP protects against insertion of extraneous packets
 into the flow of an established association by use of the
 Verification Tag.

 Logging of received INIT chunks and abnormalities such as unexpected
 INIT ACK chunks might be considered as a way to detect patterns of
 hostile activity. However, the potential usefulness of such logging
 has to be weighed against the increased SCTP startup processing it
 implies, rendering the SCTP node more vulnerable to flooding attacks.
 Logging is pointless without the establishment of operating
 procedures to review and analyze the logs on a routine basis.

12.2.4.3. Improper Monopolization of Services

 Attacks under this heading are performed openly and legitimately by
 the attacker. They are directed against fellow users of the target
 SCTP node or of the shared resources between the attacker and the
 target node. Possible attacks include the opening of a large number
 of associations between the attacker’s node and the target, or
 transfer of large volumes of information within a legitimately
 established association.

 Policy limits are expected to be placed on the number of associations
 per adjoining SCTP node. SCTP user applications are expected to be
 capable of detecting large volumes of illegitimate or "no-op"
 messages within a given association and either logging or terminating
 the association as a result, based on local policy.

12.3. SCTP Interactions with Firewalls

 It is helpful for some firewalls if they can inspect just the first
 fragment of a fragmented SCTP packet and unambiguously determine
 whether it corresponds to an INIT chunk (for further information,
 please refer to [RFC1858]). Accordingly, we stress the requirements,
 as stated in Section 3.1, that (1) an INIT chunk MUST NOT be bundled
 with any other chunk in a packet and (2) a packet containing an INIT
 chunk MUST have a zero Verification Tag. The receiver of an INIT
 chunk MUST silently discard the INIT chunk and all further chunks if
 the INIT chunk is bundled with other chunks or the packet has a non-
 zero Verification Tag.

12.4. Protection of Non-SCTP-Capable Hosts

 To provide a non-SCTP-capable host with the same level of protection
 against attacks as for SCTP-capable ones, all SCTP implementations
 MUST implement the ICMP handling described in Section 10.

Stewart, et al. Expires 9 August 2022 [Page 134]

Internet-Draft Stream Control Transmission Protocol February 2022

 When an SCTP implementation receives a packet containing multiple
 control or DATA chunks and the processing of the packet would result
 in sending multiple chunks in response, the sender of the response
 chunk(s) MUST NOT send more than one packet containing chunks other
 than DATA chunks. This requirement protects the network for
 triggering a packet burst in response to a single packet. If
 bundling is supported, multiple response chunks that fit into a
 single packet MAY be bundled together into one single response
 packet. If bundling is not supported, then the sender MUST NOT send
 more than one response chunk and MUST discard all other responses.
 Note that this rule does not apply to a SACK chunk, since a SACK
 chunk is, in itself, a response to DATA chunks and a SACK chunk does
 not require a response of more DATA chunks.

 An SCTP implementation MUST abort the association if it receives a
 SACK chunk acknowledging a TSN that has not been sent.

 An SCTP implementation that receives an INIT chunk that would require
 a large packet in response, due to the inclusion of multiple
 "Unrecognized Parameter" parameters, MAY (at its discretion) elect to
 omit some or all of the "Unrecognized Parameter" parameters to reduce
 the size of the INIT ACK chunk. Due to a combination of the size of
 the State Cookie parameter and the number of addresses a receiver of
 an INIT chunk indicates to a peer, it is always possible that the
 INIT ACK chunk will be larger than the original INIT chunk. An SCTP
 implementation SHOULD attempt to make the INIT ACK chunk as small as
 possible to reduce the possibility of byte amplification attacks.

13. Network Management Considerations

 The MIB module for SCTP defined in [RFC3873] applies for the version
 of the protocol specified in this document.

14. Recommended Transmission Control Block (TCB) Parameters

 This section details a set of parameters that are expected to be
 contained within the TCB for an implementation. This section is for
 illustrative purposes and is not considered to be requirements on an
 implementation or as an exhaustive list of all parameters inside an
 SCTP TCB. Each implementation might need its own additional
 parameters for optimization.

14.1. Parameters Necessary for the SCTP Instance

 Associations: A list of current associations and mappings to the

Stewart, et al. Expires 9 August 2022 [Page 135]

Internet-Draft Stream Control Transmission Protocol February 2022

 data consumers for each association. This might be in the form of
 a hash table or other implementation-dependent structure. The
 data consumers might be process identification information such as
 file descriptors, named pipe pointer, or table pointers dependent
 on how SCTP is implemented.

 Secret Key: A secret key used by this endpoint to compute the MAC.
 This SHOULD be a cryptographic quality random number with a
 sufficient length. Discussion in [RFC4086] can be helpful in
 selection of the key.

 Address List: The list of IP addresses that this instance has bound.
 This information is passed to one’s peer(s) in INIT and INIT ACK
 chunks.

 SCTP Port: The local SCTP port number to which the endpoint is
 bound.

14.2. Parameters Necessary per Association (i.e., the TCB)

 Peer Verification Tag: Tag value to be sent in every packet and is
 received in the INIT or INIT ACK chunk.

 My Verification Tag: Tag expected in every inbound packet and sent
 in the INIT or INIT ACK chunk.

 State: COOKIE-WAIT, COOKIE-ECHOED, ESTABLISHED, SHUTDOWN-PENDING,
 SHUTDOWN-SENT, SHUTDOWN-RECEIVED, SHUTDOWN-ACK-SENT.

 Note: No "CLOSED" state is illustrated since if a association is
 "CLOSED" its TCB SHOULD be removed.

 Peer Transport Address List: A list of SCTP transport addresses to
 which the peer is bound. This information is derived from the
 INIT or INIT ACK chunk and is used to associate an inbound packet
 with a given association. Normally, this information is hashed or
 keyed for quick lookup and access of the TCB.

 Primary Path: This is the current primary destination transport
 address of the peer endpoint. It might also specify a source
 transport address on this endpoint.

 Overall Error Count: The overall association error count.

 Overall Error Threshold: The threshold for this association that if
 the Overall Error Count reaches will cause this association to be
 torn down.

Stewart, et al. Expires 9 August 2022 [Page 136]

Internet-Draft Stream Control Transmission Protocol February 2022

 Peer Rwnd: Current calculated value of the peer’s rwnd.

 Next TSN: The next TSN number to be assigned to a new DATA chunk.
 This is sent in the INIT or INIT ACK chunk to the peer and
 incremented each time a DATA chunk is assigned a TSN (normally
 just prior to transmit or during fragmentation).

 Last Rcvd TSN: This is the last TSN received in sequence. This
 value is set initially by taking the peer’s initial TSN, received
 in the INIT or INIT ACK chunk, and subtracting one from it.

 Mapping Array: An array of bits or bytes indicating which out-of-
 order TSNs have been received (relative to the Last Rcvd TSN). If
 no gaps exist, i.e., no out-of-order packets have been received,
 this array will be set to all zero. This structure might be in
 the form of a circular buffer or bit array.

 Ack State: This flag indicates if the next received packet is to be
 responded to with a SACK chunk. This is initialized to 0. When a
 packet is received it is incremented. If this value reaches 2 or
 more, a SACK chunk is sent and the value is reset to 0. Note:
 This is used only when no DATA chunks are received out of order.
 When DATA chunks are out of order, SACK chunks are not delayed
 (see Section 6).

 Inbound Streams: An array of structures to track the inbound
 streams, normally including the next sequence number expected and
 possibly the stream number.

 Outbound Streams: An array of structures to track the outbound
 streams, normally including the next sequence number to be sent on
 the stream.

 Reasm Queue: A reassembly queue.

 Receive Buffer: A buffer to store received user data which has not
 been delivered to the upper layer.

 Local Transport Address List: The list of local IP addresses bound
 in to this association.

 Association Maximum DATA Chunk Size: The smallest Path Maximum DATA
 Chunk Size of all destination addresses.

Stewart, et al. Expires 9 August 2022 [Page 137]

Internet-Draft Stream Control Transmission Protocol February 2022

14.3. Per Transport Address Data

 For each destination transport address in the peer’s address list
 derived from the INIT or INIT ACK chunk, a number of data elements
 need to be maintained including:

 Error Count: The current error count for this destination.

 Error Threshold: Current error threshold for this destination, i.e.,
 what value marks the destination down if error count reaches this
 value.

 cwnd: The current congestion window.

 ssthresh: The current ssthresh value.

 RTO: The current retransmission timeout value.

 SRTT: The current smoothed round-trip time.

 RTTVAR: The current RTT variation.

 partial bytes acked: The tracking method for increase of cwnd when
 in congestion avoidance mode (see Section 7.2.2).

 state: The current state of this destination, i.e., DOWN, UP, ALLOW-
 HEARTBEAT, NO-HEARTBEAT, etc.

 PMTU: The current known PMTU.

 PMDCS: The current known PMDCS.

 Per Destination Timer: A timer used by each destination.

 RTO-Pending: A flag used to track if one of the DATA chunks sent to
 this address is currently being used to compute an RTT. If this
 flag is 0, the next DATA chunk sent to this destination is
 expected to be used to compute an RTT and this flag is expected to
 be set. Every time the RTT calculation completes (i.e., the DATA
 chunk is acknowledged), clear this flag.

 last-time: The time to which this destination was last sent. This
 can used be to determine if the sending of a HEARTBEAT chunk is
 needed.

Stewart, et al. Expires 9 August 2022 [Page 138]

Internet-Draft Stream Control Transmission Protocol February 2022

14.4. General Parameters Needed

 Out Queue: A queue of outbound DATA chunks.

 In Queue: A queue of inbound DATA chunks.

15. IANA Considerations

 This document defines five registries that IANA maintains:

 * through definition of additional chunk types,

 * through definition of additional chunk flags,

 * through definition of additional parameter types,

 * through definition of additional cause codes within ERROR chunks,
 or

 * through definition of additional payload protocol identifiers.

 IANA is requested to perform the following updates for the above five
 registries:

 * In the Chunk Types Registry replace in the Reference section the
 reference to [RFC4960] and [RFC6096] by a reference to this
 document.

 Replace in the Notes section the reference to Section 3.2 of
 [RFC6096] by a reference to Section 15.2 of this document.

 Finally replace each reference to [RFC4960] by a reference to this
 document for the following chunk types:

 - Payload Data (DATA)

 - Initiation (INIT)

 - Initiation Acknowledgement (INIT ACK)

 - Selective Acknowledgement (SACK)

 - Heartbeat Request (HEARTBEAT)

 - Heartbeat Acknowledgement (HEARTBEAT ACK)

 - Abort (ABORT)

Stewart, et al. Expires 9 August 2022 [Page 139]

Internet-Draft Stream Control Transmission Protocol February 2022

 - Shutdown (SHUTDOWN)

 - Shutdown Acknowledgement (SHUTDOWN ACK)

 - Operation Error (ERROR)

 - State Cookie (COOKIE ECHO)

 - Cookie Acknowledgement (COOKIE ACK)

 - Reserved for Explicit Congestion Notification Echo (ECNE)

 - Reserved for Congestion Window Reduced (CWR)

 - Shutdown Complete (SHUTDOWN COMPLETE)

 - Reserved for IETF-defined Chunk Extensions

 * In the Chunk Parameter Types Registry replace in the Reference
 section the reference to [RFC4960] by a reference to this
 document.

 Replace each reference to [RFC4960] by a reference to this
 document for the following chunk parameter types:

 - Heartbeat Info

 - IPv4 Address

 - IPv6 Address

 - State Cookie

 - Unrecognized Parameters

 - Cookie Preservative

 - Host Name Address

 - Supported Address Types

 Add a reference to this document for the following chunk parameter
 type:

 - Reserved for ECN Capable (0x8000)

 * In the Chunk Flags Registry replace in the Reference section the
 reference to [RFC6096] by a reference to this document.

Stewart, et al. Expires 9 August 2022 [Page 140]

Internet-Draft Stream Control Transmission Protocol February 2022

 Replace each reference to [RFC4960] by a reference to this
 document for the following DATA chunk flags:

 - E bit

 - B bit

 - U bit

 Replace each reference to [RFC4960] by a reference to this
 document for the following ABORT chunk flags:

 - T bit

 Replace each reference to [RFC4960] by a reference to this
 document for the following SHUTDOWN COMPLETE chunk flags:

 - T bit

 * In the Error Cause Codes Registry replace in the Reference section
 the reference to [RFC6096] by a reference to this document.

 Replace each reference to [RFC4960] by a reference to this
 document for the following cause codes:

 - Invalid Stream Identifier

 - Missing Mandatory Parameter

 - Stale Cookie Error

 - Out of Resource

 - Unresolvable Address

 - Unrecognized Chunk Type

 - Invalid Mandatory Parameter

 - Unrecognized Parameters

 - No User Data

 - Cookie Received While Shutting Down

 - Restart of an Association with New Addressess

Stewart, et al. Expires 9 August 2022 [Page 141]

Internet-Draft Stream Control Transmission Protocol February 2022

 Replace each reference to [RFC4460] by a reference to this
 document for the following cause codes:

 - User Initiated Abort

 - Protocol Violation

 * In the SCTP Payload Protocol Identifiers Registry replace in the
 Reference section the reference to [RFC6096] by a reference to
 this document.

 Replace each reference to [RFC4960] by a reference to this
 document for the following SCTP payload protocol identifiers:

 - Reserved by SCTP

 SCTP requires that the IANA Port Numbers registry be opened for SCTP
 port registrations, Section 15.6 describes how. An IESG-appointed
 Expert Reviewer supports IANA in evaluating SCTP port allocation
 requests.

 IANA is requested to perform the following update for the Port Number
 registry. Replace each reference to [RFC4960] by a reference to this
 document for the following SCTP port numbers:

 * 9 (discard)

 * 20 (ftp-data)

 * 21 (ftp)

 * 22 (ssh)

 * 80 (http)

 * 179 (bgp)

 * 443 (https)

 Furthermore, IANA is requested to replace in the HTTP Digest
 Algorithm Values registry the reference to Appendix B of [RFC4960] to
 Appendix A of this document.

 IANA is also requested to replace in the ONC RPC Netids registry,
 each of the reference to [RFC4960] by a reference to this document
 for the following netids:

 * sctp

Stewart, et al. Expires 9 August 2022 [Page 142]

Internet-Draft Stream Control Transmission Protocol February 2022

 * sctp6

 IANA is finally requested to replace in the IPFIX Information
 Elements registry, each of the reference to [RFC4960] by a reference
 to this document for the following elements with the name:

 * sourceTransportPort

 * destinationTransportPort

 * collectorTransportPort

 * exporterTransportPort

 * postNAPTSourceTransportPort

 * postNAPTDestinationTransportPort

15.1. IETF-Defined Chunk Extension

 The assignment of new chunk type codes is done through an IETF Review
 action, as defined in [RFC8126]. Documentation for a new chunk MUST
 contain the following information:

 a) A long and short name for the new chunk type.

 b) A detailed description of the structure of the chunk, which MUST
 conform to the basic structure defined in Section 3.2.

 c) A detailed definition and description of intended use of each
 field within the chunk, including the chunk flags if any.
 Defined chunk flags will be used as initial entries in the chunk
 flags table for the new chunk type.

 d) A detailed procedural description of the use of the new chunk
 type within the operation of the protocol.

 The last chunk type (255) is reserved for future extension if
 necessary.

 For each new chunk type, IANA creates a registration table for the
 chunk flags of that type. The procedure for registering particular
 chunk flags is described in Section 15.2.

Stewart, et al. Expires 9 August 2022 [Page 143]

Internet-Draft Stream Control Transmission Protocol February 2022

15.2. IETF Chunk Flags Registration

 The assignment of new chunk flags is done through an RFC Required
 action, as defined in [RFC8126]. Documentation for the chunk flags
 MUST contain the following information:

 a) A name for the new chunk flag.

 b) A detailed procedural description of the use of the new chunk
 flag within the operation of the protocol. It MUST be considered
 that implementations not supporting the flag will send 0 on
 transmit and just ignore it on receipt.

 IANA selects a chunk flags value. This MUST be one of 0x01, 0x02,
 0x04, 0x08, 0x10, 0x20, 0x40, or 0x80, which MUST be unique within
 the chunk flag values for the specific chunk type.

15.3. IETF-Defined Chunk Parameter Extension

 The assignment of new chunk parameter type codes is done through an
 IETF Review action as defined in [RFC8126]. Documentation of the
 chunk parameter MUST contain the following information:

 a) Name of the parameter type.

 b) Detailed description of the structure of the parameter field.
 This structure MUST conform to the general Type-Length-Value
 format described in Section 3.2.1.

 c) Detailed definition of each component of the parameter value.

 d) Detailed description of the intended use of this parameter type,
 and an indication of whether and under what circumstances
 multiple instances of this parameter type can be found within the
 same chunk.

 e) Each parameter type MUST be unique across all chunks.

15.4. IETF-Defined Additional Error Causes

 Additional cause codes can be allocated in the range 11 to 65535
 through a Specification Required action as defined in [RFC8126].
 Provided documentation MUST include the following information:

 a) Name of the error condition.

 b) Detailed description of the conditions under which an SCTP
 endpoint issues an ERROR (or ABORT) chunk with this cause code.

Stewart, et al. Expires 9 August 2022 [Page 144]

Internet-Draft Stream Control Transmission Protocol February 2022

 c) Expected action by the SCTP endpoint that receives an ERROR (or
 ABORT) chunk containing this cause code.

 d) Detailed description of the structure and content of data fields
 that accompany this cause code.

 The initial word (32 bits) of a cause code parameter MUST conform to
 the format shown in Section 3.3.10, i.e.:

 * first 2 bytes contain the cause code value

 * last 2 bytes contain the length of the cause parameter.

15.5. Payload Protocol Identifiers

 The assignment of payload protocol identifier is done using the First
 Come First Served policy as defined in [RFC8126].

 Except for value 0, which is reserved to indicate an unspecified
 payload protocol identifier in a DATA chunk, an SCTP implementation
 will not be responsible for standardizing or verifying any payload
 protocol identifiers; An SCTP implementation simply receives the
 identifier from the upper layer and carries it with the corresponding
 payload data.

 The upper layer, i.e., the SCTP user, SHOULD standardize any specific
 protocol identifier with IANA if it is so desired. The use of any
 specific payload protocol identifier is out of the scope of this
 specification.

15.6. Port Numbers Registry

 SCTP services can use contact port numbers to provide service to
 unknown callers, as in TCP and UDP. An IESG-appointed expert
 reviewer supports IANA in evaluating SCTP port allocation requests,
 according to the procedure defined in [RFC8126]. The details of this
 process are defined in [RFC6335].

16. Suggested SCTP Protocol Parameter Values

 The following protocol parameters are RECOMMENDED:

 RTO.Initial: 1 second

 RTO.Min: 1 second

 RTO.Max: 60 seconds

Stewart, et al. Expires 9 August 2022 [Page 145]

Internet-Draft Stream Control Transmission Protocol February 2022

 Max.Burst: 4

 RTO.Alpha: 1/8

 RTO.Beta: 1/4

 Valid.Cookie.Life: 60 seconds

 Association.Max.Retrans: 10 attempts

 Path.Max.Retrans: 5 attempts (per destination address)

 Max.Init.Retransmits: 8 attempts

 HB.interval: 30 seconds

 HB.Max.Burst: 1

 SACK.Delay: 200 milliseconds

 Implementation Note: The SCTP implementation can allow ULP to
 customize some of these protocol parameters (see Section 11).

 ’RTO.Min’ SHOULD be set as described above in this section.

17. Acknowledgements

 An undertaking represented by this updated document is not a small
 feat and represents the summation of the initial co-authors of
 [RFC2960]: Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
 T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson.

 Add to that, the comments from everyone who contributed to [RFC2960]:
 Mark Allman, R. J. Atkinson, Richard Band, Scott Bradner, Steve
 Bellovin, Peter Butler, Ram Dantu, R. Ezhirpavai, Mike Fisk, Sally
 Floyd, Atsushi Fukumoto, Matt Holdrege, Henry Houh, Christian
 Huitema, Gary Lehecka, Jonathan Lee, David Lehmann, John Loughney,
 Daniel Luan, Barry Nagelberg, Thomas Narten, Erik Nordmark, Lyndon
 Ong, Shyamal Prasad, Kelvin Porter, Heinz Prantner, Jarno Rajahalme,
 Raymond E. Reeves, Renee Revis, Ivan Arias Rodriguez, A. Sankar, Greg
 Sidebottom, Brian Wyld, La Monte Yarroll, and many others for their
 invaluable comments.

 Then, add the co-authors of [RFC4460]: I. Arias-Rodriguez, K. Poon,
 and A. Caro.

Stewart, et al. Expires 9 August 2022 [Page 146]

Internet-Draft Stream Control Transmission Protocol February 2022

 Then add to these the efforts of all the subsequent seven SCTP
 interoperability tests and those who commented on [RFC4460] as shown
 in its acknowledgements: Barry Zuckerman, La Monte Yarroll, Qiaobing
 Xie, Wang Xiaopeng, Jonathan Wood, Jeff Waskow, Mike Turner, John
 Townsend, Sabina Torrente, Cliff Thomas, Yuji Suzuki, Manoj Solanki,
 Sverre Slotte, Keyur Shah, Jan Rovins, Ben Robinson, Renee Revis, Ian
 Periam, RC Monee, Sanjay Rao, Sujith Radhakrishnan, Heinz Prantner,
 Biren Patel, Nathalie Mouellic, Mitch Miers, Bernward Meyknecht, Stan
 McClellan, Oliver Mayor, Tomas Orti Martin, Sandeep Mahajan, David
 Lehmann, Jonathan Lee, Philippe Langlois, Karl Knutson, Joe Keller,
 Gareth Keily, Andreas Jungmaier, Janardhan Iyengar, Mutsuya Irie,
 John Hebert, Kausar Hassan, Fred Hasle, Dan Harrison, Jon Grim,
 Laurent Glaude, Steven Furniss, Atsushi Fukumoto, Ken Fujita, Steve
 Dimig, Thomas Curran, Serkan Cil, Melissa Campbell, Peter Butler, Rob
 Brennan, Harsh Bhondwe, Brian Bidulock, Caitlin Bestler, Jon Berger,
 Robby Benedyk, Stephen Baucke, Sandeep Balani, and Ronnie Sellar.

 A special thanks to Mark Allman, who should actually be a co-author
 for his work on the max-burst, but managed to wiggle out due to a
 technicality.

 Also, we would like to acknowledge Lyndon Ong and Phil Conrad for
 their valuable input and many contributions.

 Furthermore, you have [RFC4960], and those who have commented upon
 that including Alfred Hönes and Ronnie Sellars.

 Then, add the co-author of [RFC8540]: Maksim Proshin.

 And people who have commented on [RFC8540]: Pontus Andersson, Eric
 W. Biederman, Cedric Bonnet, Spencer Dawkins, Gorry Fairhurst,
 Benjamin Kaduk, Mirja Kühlewind, Peter Lei, Gyula Marosi, Lionel
 Morand, Jeff Morriss, Tom Petch, Kacheong Poon, Julien Pourtet, Irene
 Rüngeler, Michael Welzl, and Qiaobing Xie.

 And finally the people who have provided comments for this document
 including Gorry Fairhurst, Martin Duke, Benjamin Kaduk, Tero Kivinen,
 Eliot Lear, Marcelo Ricardo Leitner, David Mandelberg, John Mattsson,
 Claudio Porfiri, Maksim Proshin, Ines Robles, Timo Völker, Magnus
 Westerlund, and Zhouming.

 Our thanks cannot be adequately expressed to all of you who have
 participated in the coding, testing, and updating process of this
 document. All we can say is, Thank You!

18. Normative References

Stewart, et al. Expires 9 August 2022 [Page 147]

Internet-Draft Stream Control Transmission Protocol February 2022

 [ITU.V42.1994]
 International Telecommunications Union, "Error-correcting
 Procedures for DCEs Using Asynchronous-to-Synchronous
 Conversion", ITU-T Recommendation V.42, 1994.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/info/rfc1123>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
 DOI 10.17487/RFC1982, August 1996,
 <https://www.rfc-editor.org/info/rfc1982>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, DOI 10.17487/RFC4303, December 2005,
 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <https://www.rfc-editor.org/info/rfc4895>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and

Stewart, et al. Expires 9 August 2022 [Page 148]

Internet-Draft Stream Control Transmission Protocol February 2022

 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6083] Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram
 Transport Layer Security (DTLS) for Stream Control
 Transmission Protocol (SCTP)", RFC 6083,
 DOI 10.17487/RFC6083, January 2011,
 <https://www.rfc-editor.org/info/rfc6083>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

 [RFC8899] Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.
 Völker, "Packetization Layer Path MTU Discovery for
 Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,
 September 2020, <https://www.rfc-editor.org/info/rfc8899>.

19. Informative References

 [FALL96] Fall, K. and S. Floyd, "Simulation-based Comparisons of
 Tahoe, Reno, and SACK TCP", SIGCOM 99, V. 26, N. 3,
 pp 5-21, July 1996.

 [SAVAGE99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP Congestion Control with a Misbehaving Receiver", ACM
 Computer Communications Review 29(5), October 1999.

Stewart, et al. Expires 9 August 2022 [Page 149]

Internet-Draft Stream Control Transmission Protocol February 2022

 [ALLMAN99] Allman, M. and V. Paxson, "On Estimating End-to-End
 Network Path Properties", SIGCOM 99, 1999.

 [WILLIAMS93]
 Williams, R., "A PAINLESS GUIDE TO CRC ERROR DETECTION
 ALGORITHMS", SIGCOM 99, August 1993,
 <http://www.geocities.com/SiliconValley/Pines/8659/
 crc.htm>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1858] Ziemba, G., Reed, D., and P. Traina, "Security
 Considerations for IP Fragment Filtering", RFC 1858,
 DOI 10.17487/RFC1858, October 1995,
 <https://www.rfc-editor.org/info/rfc1858>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2196] Fraser, B., "Site Security Handbook", FYI 8, RFC 2196,
 DOI 10.17487/RFC2196, September 1997,
 <https://www.rfc-editor.org/info/rfc2196>.

 [RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key Management
 Protocol", RFC 2522, DOI 10.17487/RFC2522, March 1999,
 <https://www.rfc-editor.org/info/rfc2522>.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, DOI 10.17487/RFC2960, October 2000,
 <https://www.rfc-editor.org/info/rfc2960>.

 [RFC3465] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February
 2003, <https://www.rfc-editor.org/info/rfc3465>.

Stewart, et al. Expires 9 August 2022 [Page 150]

Internet-Draft Stream Control Transmission Protocol February 2022

 [RFC3873] Pastor, J. and M. Belinchon, "Stream Control Transmission
 Protocol (SCTP) Management Information Base (MIB)",
 RFC 3873, DOI 10.17487/RFC3873, September 2004,
 <https://www.rfc-editor.org/info/rfc3873>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC4460] Stewart, R., Arias-Rodriguez, I., Poon, K., Caro, A., and
 M. Tuexen, "Stream Control Transmission Protocol (SCTP)
 Specification Errata and Issues", RFC 4460,
 DOI 10.17487/RFC4460, April 2006,
 <https://www.rfc-editor.org/info/rfc4460>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC6096] Tuexen, M. and R. Stewart, "Stream Control Transmission
 Protocol (SCTP) Chunk Flags Registration", RFC 6096,
 DOI 10.17487/RFC6096, January 2011,
 <https://www.rfc-editor.org/info/rfc6096>.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458,
 DOI 10.17487/RFC6458, December 2011,
 <https://www.rfc-editor.org/info/rfc6458>.

 [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
 Control Transmission Protocol (SCTP) Packets for End-Host
 to End-Host Communication", RFC 6951,
 DOI 10.17487/RFC6951, May 2013,
 <https://www.rfc-editor.org/info/rfc6951>.

 [RFC7053] Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,
 <https://www.rfc-editor.org/info/rfc7053>.

Stewart, et al. Expires 9 August 2022 [Page 151]

Internet-Draft Stream Control Transmission Protocol February 2022

 [RFC8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", RFC 8260,
 DOI 10.17487/RFC8260, November 2017,
 <https://www.rfc-editor.org/info/rfc8260>.

 [RFC8261] Tuexen, M., Stewart, R., Jesup, R., and S. Loreto,
 "Datagram Transport Layer Security (DTLS) Encapsulation of
 SCTP Packets", RFC 8261, DOI 10.17487/RFC8261, November
 2017, <https://www.rfc-editor.org/info/rfc8261>.

 [RFC8540] Stewart, R., Tuexen, M., and M. Proshin, "Stream Control
 Transmission Protocol: Errata and Issues in RFC 4960",
 RFC 8540, DOI 10.17487/RFC8540, February 2019,
 <https://www.rfc-editor.org/info/rfc8540>.

Appendix A. CRC32c Checksum Calculation

 We define a ’reflected value’ as one that is the opposite of the
 normal bit order of the machine. The 32-bit CRC (Cyclic Redundancy
 Check) is calculated as described for CRC32c and uses the polynomial
 code 0x11EDC6F41 (Castagnoli93) or x^32+x^28+x^27+x^26+x^25+x^23+x^22
 +x^20+x^19+x^18+x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0. The CRC is
 computed using a procedure similar to ETHERNET CRC [ITU.V42.1994],
 modified to reflect transport-level usage.

 CRC computation uses polynomial division. A message bit-string M is
 transformed to a polynomial, M(X), and the CRC is calculated from
 M(X) using polynomial arithmetic.

 When CRCs are used at the link layer, the polynomial is derived from
 on-the-wire bit ordering: the first bit ’on the wire’ is the high-
 order coefficient. Since SCTP is a transport-level protocol, it
 cannot know the actual serial-media bit ordering. Moreover,
 different links in the path between SCTP endpoints can use different
 link-level bit orders.

Stewart, et al. Expires 9 August 2022 [Page 152]

Internet-Draft Stream Control Transmission Protocol February 2022

 A convention therefore is established for mapping SCTP transport
 messages to polynomials for purposes of CRC computation. The bit-
 ordering for mapping SCTP messages to polynomials is that bytes are
 taken most-significant first, but within each byte, bits are taken
 least-significant first. The first byte of the message provides the
 eight highest coefficients. Within each byte, the least-significant
 SCTP bit gives the most-significant polynomial coefficient within
 that byte, and the most-significant SCTP bit is the least-significant
 polynomial coefficient in that byte. (This bit ordering is sometimes
 called ’mirrored’ or ’reflected’ [WILLIAMS93].) CRC polynomials are
 to be transformed back into SCTP transport-level byte values, using a
 consistent mapping.

 The SCTP transport-level CRC value can be calculated as follows:

 * CRC input data are assigned to a byte stream, numbered from 0 to
 N-1.

 * The transport-level byte stream is mapped to a polynomial value.
 An N-byte PDU with j bytes numbered 0 to N-1 is considered as
 coefficients of a polynomial M(x) of order 8*N-1, with bit 0 of
 byte j being coefficient x^(8*(N-j)-8), and bit 7 of byte j being
 coefficient x^(8*(N-j)-1).

 * The CRC remainder register is initialized with all 1s and the CRC
 is computed with an algorithm that simultaneously multiplies by
 x^32 and divides by the CRC polynomial.

 * The polynomial is multiplied by x^32 and divided by G(x), the
 generator polynomial, producing a remainder R(x) of degree less
 than or equal to 31.

 * The coefficients of R(x) are considered a 32-bit sequence.

 * The bit sequence is complemented. The result is the CRC
 polynomial.

 * The CRC polynomial is mapped back into SCTP transport-level bytes.
 The coefficient of x^31 gives the value of bit 7 of SCTP byte 0,
 and the coefficient of x^24 gives the value of bit 0 of byte 0.
 The coefficient of x^7 gives bit 7 of byte 3, and the coefficient
 of x^0 gives bit 0 of byte 3. The resulting 4-byte transport-
 level sequence is the 32-bit SCTP checksum value.

 Implementation Note: Standards documents, textbooks, and vendor
 literature on CRCs often follow an alternative formulation, in which
 the register used to hold the remainder of the long-division
 algorithm is initialized to zero rather than all ones, and instead

Stewart, et al. Expires 9 August 2022 [Page 153]

Internet-Draft Stream Control Transmission Protocol February 2022

 the first 32 bits of the message are complemented. The long-division
 algorithm used in our formulation is specified such that the initial
 multiplication by 2^32 and the long-division are combined into one
 simultaneous operation. For such algorithms, and for messages longer
 than 64 bits, the two specifications are precisely equivalent. That
 equivalence is the intent of this document.

 Implementors of SCTP are warned that both specifications are to be
 found in the literature, sometimes with no restriction on the long-
 division algorithm. The choice of formulation in this document is to
 permit non-SCTP usage, where the same CRC algorithm can be used to
 protect messages shorter than 64 bits.

 There can be a computational advantage in validating the association
 against the Verification Tag, prior to performing a checksum, as
 invalid tags will result in the same action as a bad checksum in most
 cases. The exceptions for this technique would be packets containing
 INIT chunks and some SHUTDOWN-COMPLETE chunks, as well as a stale
 COOKIE ECHO chunks. These special-case exchanges represent small
 packets and will minimize the effect of the checksum calculation.

 The following non-normative sample code is taken from an open-source
 CRC generator [WILLIAMS93], using the "mirroring" technique and
 yielding a lookup table for SCTP CRC32c with 256 entries, each 32
 bits wide. While neither especially slow nor especially fast, as
 software table-lookup CRCs go, it has the advantage of working on
 both big-endian and little-endian CPUs, using the same (host-order)
 lookup tables, and using only the predefined ntohl() and htonl()
 operations. The code is somewhat modified from [WILLIAMS93], to
 ensure portability between big-endian and little-endian
 architectures, use fixed sized types to allow portability between
 32-bit and 64-bit platforms, and general C code improvements. (Note
 that if the byte endian-ness of the target architecture is known to
 be little-endian, the final bit-reversal and byte-reversal steps can
 be folded into a single operation.)

 <CODE BEGINS>
 /**/
 /* Note: The definitions for Ross Williams’s table generator */
 /* would be TB_WIDTH=4, TB_POLY=0x1EDC6F41, TB_REVER=TRUE. */
 /* For Mr. Williams’s direct calculation code, use the settings */
 /* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF, */
 /* cm_refin=TRUE, cm_refot=TRUE, cm_xorot=0x00000000. */
 /**/

 /* Example of the crc table file */
 #ifndef __crc32cr_h__
 #define __crc32cr_h__

Stewart, et al. Expires 9 August 2022 [Page 154]

Internet-Draft Stream Control Transmission Protocol February 2022

 #define CRC32C_POLY 0x1EDC6F41UL
 #define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

 uint32_t crc_c[256] = {
 0x00000000UL, 0xF26B8303UL, 0xE13B70F7UL, 0x1350F3F4UL,
 0xC79A971FUL, 0x35F1141CUL, 0x26A1E7E8UL, 0xD4CA64EBUL,
 0x8AD958CFUL, 0x78B2DBCCUL, 0x6BE22838UL, 0x9989AB3BUL,
 0x4D43CFD0UL, 0xBF284CD3UL, 0xAC78BF27UL, 0x5E133C24UL,
 0x105EC76FUL, 0xE235446CUL, 0xF165B798UL, 0x030E349BUL,
 0xD7C45070UL, 0x25AFD373UL, 0x36FF2087UL, 0xC494A384UL,
 0x9A879FA0UL, 0x68EC1CA3UL, 0x7BBCEF57UL, 0x89D76C54UL,
 0x5D1D08BFUL, 0xAF768BBCUL, 0xBC267848UL, 0x4E4DFB4BUL,
 0x20BD8EDEUL, 0xD2D60DDDUL, 0xC186FE29UL, 0x33ED7D2AUL,
 0xE72719C1UL, 0x154C9AC2UL, 0x061C6936UL, 0xF477EA35UL,
 0xAA64D611UL, 0x580F5512UL, 0x4B5FA6E6UL, 0xB93425E5UL,
 0x6DFE410EUL, 0x9F95C20DUL, 0x8CC531F9UL, 0x7EAEB2FAUL,
 0x30E349B1UL, 0xC288CAB2UL, 0xD1D83946UL, 0x23B3BA45UL,
 0xF779DEAEUL, 0x05125DADUL, 0x1642AE59UL, 0xE4292D5AUL,
 0xBA3A117EUL, 0x4851927DUL, 0x5B016189UL, 0xA96AE28AUL,
 0x7DA08661UL, 0x8FCB0562UL, 0x9C9BF696UL, 0x6EF07595UL,
 0x417B1DBCUL, 0xB3109EBFUL, 0xA0406D4BUL, 0x522BEE48UL,
 0x86E18AA3UL, 0x748A09A0UL, 0x67DAFA54UL, 0x95B17957UL,
 0xCBA24573UL, 0x39C9C670UL, 0x2A993584UL, 0xD8F2B687UL,
 0x0C38D26CUL, 0xFE53516FUL, 0xED03A29BUL, 0x1F682198UL,
 0x5125DAD3UL, 0xA34E59D0UL, 0xB01EAA24UL, 0x42752927UL,
 0x96BF4DCCUL, 0x64D4CECFUL, 0x77843D3BUL, 0x85EFBE38UL,
 0xDBFC821CUL, 0x2997011FUL, 0x3AC7F2EBUL, 0xC8AC71E8UL,
 0x1C661503UL, 0xEE0D9600UL, 0xFD5D65F4UL, 0x0F36E6F7UL,
 0x61C69362UL, 0x93AD1061UL, 0x80FDE395UL, 0x72966096UL,
 0xA65C047DUL, 0x5437877EUL, 0x4767748AUL, 0xB50CF789UL,
 0xEB1FCBADUL, 0x197448AEUL, 0x0A24BB5AUL, 0xF84F3859UL,
 0x2C855CB2UL, 0xDEEEDFB1UL, 0xCDBE2C45UL, 0x3FD5AF46UL,
 0x7198540DUL, 0x83F3D70EUL, 0x90A324FAUL, 0x62C8A7F9UL,
 0xB602C312UL, 0x44694011UL, 0x5739B3E5UL, 0xA55230E6UL,
 0xFB410CC2UL, 0x092A8FC1UL, 0x1A7A7C35UL, 0xE811FF36UL,
 0x3CDB9BDDUL, 0xCEB018DEUL, 0xDDE0EB2AUL, 0x2F8B6829UL,
 0x82F63B78UL, 0x709DB87BUL, 0x63CD4B8FUL, 0x91A6C88CUL,
 0x456CAC67UL, 0xB7072F64UL, 0xA457DC90UL, 0x563C5F93UL,
 0x082F63B7UL, 0xFA44E0B4UL, 0xE9141340UL, 0x1B7F9043UL,
 0xCFB5F4A8UL, 0x3DDE77ABUL, 0x2E8E845FUL, 0xDCE5075CUL,
 0x92A8FC17UL, 0x60C37F14UL, 0x73938CE0UL, 0x81F80FE3UL,
 0x55326B08UL, 0xA759E80BUL, 0xB4091BFFUL, 0x466298FCUL,
 0x1871A4D8UL, 0xEA1A27DBUL, 0xF94AD42FUL, 0x0B21572CUL,
 0xDFEB33C7UL, 0x2D80B0C4UL, 0x3ED04330UL, 0xCCBBC033UL,
 0xA24BB5A6UL, 0x502036A5UL, 0x4370C551UL, 0xB11B4652UL,
 0x65D122B9UL, 0x97BAA1BAUL, 0x84EA524EUL, 0x7681D14DUL,
 0x2892ED69UL, 0xDAF96E6AUL, 0xC9A99D9EUL, 0x3BC21E9DUL,
 0xEF087A76UL, 0x1D63F975UL, 0x0E330A81UL, 0xFC588982UL,

Stewart, et al. Expires 9 August 2022 [Page 155]

Internet-Draft Stream Control Transmission Protocol February 2022

 0xB21572C9UL, 0x407EF1CAUL, 0x532E023EUL, 0xA145813DUL,
 0x758FE5D6UL, 0x87E466D5UL, 0x94B49521UL, 0x66DF1622UL,
 0x38CC2A06UL, 0xCAA7A905UL, 0xD9F75AF1UL, 0x2B9CD9F2UL,
 0xFF56BD19UL, 0x0D3D3E1AUL, 0x1E6DCDEEUL, 0xEC064EEDUL,
 0xC38D26C4UL, 0x31E6A5C7UL, 0x22B65633UL, 0xD0DDD530UL,
 0x0417B1DBUL, 0xF67C32D8UL, 0xE52CC12CUL, 0x1747422FUL,
 0x49547E0BUL, 0xBB3FFD08UL, 0xA86F0EFCUL, 0x5A048DFFUL,
 0x8ECEE914UL, 0x7CA56A17UL, 0x6FF599E3UL, 0x9D9E1AE0UL,
 0xD3D3E1ABUL, 0x21B862A8UL, 0x32E8915CUL, 0xC083125FUL,
 0x144976B4UL, 0xE622F5B7UL, 0xF5720643UL, 0x07198540UL,
 0x590AB964UL, 0xAB613A67UL, 0xB831C993UL, 0x4A5A4A90UL,
 0x9E902E7BUL, 0x6CFBAD78UL, 0x7FAB5E8CUL, 0x8DC0DD8FUL,
 0xE330A81AUL, 0x115B2B19UL, 0x020BD8EDUL, 0xF0605BEEUL,
 0x24AA3F05UL, 0xD6C1BC06UL, 0xC5914FF2UL, 0x37FACCF1UL,
 0x69E9F0D5UL, 0x9B8273D6UL, 0x88D28022UL, 0x7AB90321UL,
 0xAE7367CAUL, 0x5C18E4C9UL, 0x4F48173DUL, 0xBD23943EUL,
 0xF36E6F75UL, 0x0105EC76UL, 0x12551F82UL, 0xE03E9C81UL,
 0x34F4F86AUL, 0xC69F7B69UL, 0xD5CF889DUL, 0x27A40B9EUL,
 0x79B737BAUL, 0x8BDCB4B9UL, 0x988C474DUL, 0x6AE7C44EUL,
 0xBE2DA0A5UL, 0x4C4623A6UL, 0x5F16D052UL, 0xAD7D5351UL,
 };

 #endif

 /* Example of table build routine */

 #include <stdio.h>
 #include <stdlib.h>

 #define OUTPUT_FILE "crc32cr.h"
 #define CRC32C_POLY 0x1EDC6F41UL

 static FILE *tf;

 static uint32_t
 reflect_32(uint32_t b)
 {
 int i;
 uint32_t rw = 0UL;

 for (i = 0; i < 32; i++) {
 if (b & 1)
 rw |= 1UL << (31 - i);
 b >>= 1;
 }
 return (rw);
 }

Stewart, et al. Expires 9 August 2022 [Page 156]

Internet-Draft Stream Control Transmission Protocol February 2022

 static uint32_t
 build_crc_table (int index)
 {
 int i;
 uint32_t rb;

 rb = reflect_32(index);

 for (i = 0; i < 8; i++) {
 if (rb & 0x80000000UL)
 rb = (rb << 1) ^ (uint32_t)CRC32C_POLY;
 else
 rb <<= 1;
 }
 return (reflect_32(rb));
 }

 int
 main (void)
 {
 int i;

 printf("\nGenerating CRC32c table file <%s>.\n",
 OUTPUT_FILE);
 if ((tf = fopen(OUTPUT_FILE, "w")) == NULL) {
 printf("Unable to open %s.\n", OUTPUT_FILE);
 exit (1);
 }
 fprintf(tf, "#ifndef __crc32cr_h__\n");
 fprintf(tf, "#define __crc32cr_h__\n\n");
 fprintf(tf, "#define CRC32C_POLY 0x%08XUL\n",
 (uint32_t)CRC32C_POLY);
 fprintf(tf,
 "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
 fprintf(tf, "\nuint32_t crc_c[256] =\n{\n");
 for (i = 0; i < 256; i++) {
 fprintf(tf, "0x%08XUL,", build_crc_table (i));
 if ((i & 3) == 3)
 fprintf(tf, "\n");
 else
 fprintf(tf, " ");
 }
 fprintf(tf, "};\n\n#endif\n");

 if (fclose(tf) != 0)
 printf("Unable to close <%s>.\n", OUTPUT_FILE);
 else
 printf("\nThe CRC32c table has been written to <%s>.\n",

Stewart, et al. Expires 9 August 2022 [Page 157]

Internet-Draft Stream Control Transmission Protocol February 2022

 OUTPUT_FILE);
 return (0);
 }

 /* Example of crc insertion */

 #include "crc32cr.h"

 uint32_t
 generate_crc32c(unsigned char *buffer, unsigned int length)
 {
 unsigned int i;
 uint32_t crc32 = 0xffffffffUL;
 uint32_t result;
 uint32_t byte0, byte1, byte2, byte3;

 for (i = 0; i < length; i++) {
 CRC32C(crc32, buffer[i]);
 }

 result = ˜crc32;

 /* result now holds the negated polynomial remainder,
 * since the table and algorithm are "reflected" [williams95].
 * That is, result has the same value as if we mapped the message
 * to a polynomial, computed the host-bit-order polynomial
 * remainder, performed final negation, and then did an
 * end-for-end bit-reversal.
 * Note that a 32-bit bit-reversal is identical to four in-place
 * 8-bit bit-reversals followed by an end-for-end byteswap.
 * In other words, the bits of each byte are in the right order,
 * but the bytes have been byteswapped. So, we now do an explicit
 * byteswap. On a little-endian machine, this byteswap and
 * the final ntohl cancel out and could be elided.
 */

 byte0 = result & 0xff;
 byte1 = (result>>8) & 0xff;
 byte2 = (result>>16) & 0xff;
 byte3 = (result>>24) & 0xff;
 crc32 = ((byte0 << 24) |
 (byte1 << 16) |
 (byte2 << 8) |
 byte3);
 return (crc32);
 }

 int

Stewart, et al. Expires 9 August 2022 [Page 158]

Internet-Draft Stream Control Transmission Protocol February 2022

 insert_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 uint32_t crc32;

 message = (SCTP_message *)buffer;
 message->common_header.checksum = 0UL;
 crc32 = generate_crc32c(buffer,length);
 /* and insert it into the message */
 message->common_header.checksum = htonl(crc32);
 return (1);
 }

 int
 validate_crc32(unsigned char *buffer, unsigned int length)
 {
 SCTP_message *message;
 unsigned int i;
 uint32_t original_crc32;
 uint32_t crc32;

 /* save and zero checksum */
 message = (SCTP_message *)buffer;
 original_crc32 = ntohl(message->common_header.checksum);
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer, length);
 return ((original_crc32 == crc32) ? 1 : -1);
 }
 <CODE ENDS>

Authors’ Addresses

 Randall R. Stewart
 Netflix, Inc.
 2455 Heritage Green Ave
 Davenport, FL 33837
 United States

 Email: randall@lakerest.net

 Michael Tüxen
 Münster University of Applied Sciences
 Stegerwaldstrasse 39
 48565 Steinfurt
 Germany

 Email: tuexen@fh-muenster.de

Stewart, et al. Expires 9 August 2022 [Page 159]

Internet-Draft Stream Control Transmission Protocol February 2022

 Karen E. E. Nielsen
 Kamstrup A/S
 Industrivej 28
 DK-8660 Skanderborg
 Denmark

 Email: kee@kamstrup.com

Stewart, et al. Expires 9 August 2022 [Page 160]

