draft-toutain-6lo-6lo-and-SCHC-00

Authors:
Laurent Toutain <Laurent.Toutain@imt-atlantique.fr>
Ana Minaburo <ana@ackl.io>
<table>
<thead>
<tr>
<th>LPWAN technologies</th>
<th>6LoWPAN/6Lo wireless technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoRaWAN</td>
<td>IEEE 802.15.4</td>
</tr>
<tr>
<td>Sigfox</td>
<td>Various:</td>
</tr>
<tr>
<td>NB-IoT</td>
<td>416 (min), 2200 (max)</td>
</tr>
<tr>
<td>Type of band</td>
<td>Unlicensed</td>
</tr>
<tr>
<td>Modulation</td>
<td>CSS</td>
</tr>
<tr>
<td>Frequency band(s) (MHz)</td>
<td>868 (EU), 915 (US), 783 (China)</td>
</tr>
<tr>
<td>Receiver sensitivity (dBm)</td>
<td>-137 (typical)</td>
</tr>
<tr>
<td>PHY layer data rate (kbit/s)</td>
<td>0.25 – 5.47 (EU), 50 (optional)</td>
</tr>
<tr>
<td>Message rate constraints</td>
<td>Duty cycle < 1% (EU, China)</td>
</tr>
<tr>
<td>Capacity per device (order of magnitude, in bit/s)</td>
<td>10^7 (DR0, EU), 10^8 (DR5, EU)</td>
</tr>
<tr>
<td>MAC mechanism</td>
<td>Aloha-based (optional ACKs + retries)</td>
</tr>
<tr>
<td>Maximum frame payload size (bytes)</td>
<td>11 (DR0, USA) = 242 (worldwide)</td>
</tr>
<tr>
<td>Fragmentation and reassembly</td>
<td>No</td>
</tr>
<tr>
<td>Network topology</td>
<td>Star</td>
</tr>
<tr>
<td>Standards Development, Organization</td>
<td>LoRa Alliance (company)</td>
</tr>
</tbody>
</table>

SCHC C/D & F/R
3 deliverables in one draft

- Spec. of a Header Compression engine (**Section 7**)
 - Generic engine, uses Static Context (→ SCHC)

- Specification of a fragmentation protocol (**Section 8**)
 - Has 3 different “modes” described in this draft
 - The different modes address different requirements

- Spec. of simple UDP/IPv6 compression (**Section 10**)
 - Using this SCHC engine
Other related drafts

• Canonical representation of context
• Apply SCHC compression to upper-layer protocols
 – For example, CoAP/UDP/IPv6
• Apply SCHC fragmentation to underlying networks
 – For example, Sigfox, LoRaWAN®
Uncompressed header

Card 1
Header
description

rule

context

Rule id

Card 12 [compressed header]

Residue

Card 1
Header
description

+ remaining data

Uncompressed header
6lo and SCHC

• Context
 – 6lo: no state for C/D, rules are known by construction
 – SCHC: no state for C/D, rules must be known by both ends (called context)
6lo and SCHC

• Bitmap and Rule ID:
 – 6lo: A fixed size bitmap gives the compression behavior and residues
 – SCHC: The rule ID has no semantic, its size is variable
 • more frequent compression schemes may have smaller sizes
6lo and SCHC

- Compression / Decompression functions:
 - Both: Send/Elided/Mapping/Compute
 - SCHC: MSB/LSB, (+extensible)

- C/D Behavior:
 - 6lo: fixed in the RFC
 - SCHC: Rules define the behavior.
SCHC in meshed 6lo?

• SCHC offers a generic field description tool:
 – Size, position, direction,
 – An extendable compression/decompression mechanism.

• 6lo and SCHC are complementary solutions
 – It is time to look at them together.