Update on BRSKI-AE — Support for asynchronous enrollment

draft-fries-anima-brski-async-enroll-02

Steffen Fries, Hendrik Brockhaus, Elliot Lear

IETF 106 – ANIMA Working Group
Problem statement

• There exists various industrial scenarios, which
 • have limited online connectivity to backend services either technically or by policy used during onboarding / enrollment.
 • assume only limited on-site PKI functionality support (Proxy), either
 • rely on a backend or centralized PKI, to perform (final) authorization of certification requests for an operational certificate (LDevID).
 • may not feature trusted domain component for store and forward
 • require multiple hops to the issuing PKI due to network segmentation or apply different transport protocols between the pledge and the issuing RA/CA.
 • required consistency for certificate management over device / system lifecycle (e.g., pre-selected enrollment protocols)
Changes from version 01 → 02

- Update of introduction text to clearly relate to the usage of IDevID and LDevID in the context of self-contained objects (approach described in a protocol agnostic way)
- Update of description of architecture elements and changes to BRSKI in Section 5
- Enhancement of addressing scheme used in BRSKI to allow for support of multiple enrollment protocols in BRSKI-AE in Section 5.3. Also considers first steps for an optional discovery mechanism to address situations in which the registrar supports more than one enrollment approach. (see next slides)
- Enhanced consideration of existing enrollment protocols in the context of mapping the requirements to existing solutions in Section 4.3 and in Section 7.
Recall: Asynchronous enrollment with authenticated self-contained objects

- Asynchronous enrollment has to cope with at least the following requirements:
 - Proof of possession of the private key corresponding to the public key contained in the certification request.
 - Proof of identity of the requestor, bound to the certification request (and thus to the proof of possession). → BRSKI does the binding via the transport protocol, BRSKI-AE motivates self-contained objects.
 - Certificate waiting indication if the contacted RA is not able to issue the requested certificate immediately or is not reachable.
 - Draft lists requirements for handling self-contained objects and is agnostic regarding the actual enrollment protocol, but already takes existing approaches into account.
BRSKI-AE provides enhancements for BRSKI to support asynchronous enrollment

- Utilizes authenticated self-contained-object for LDevID certification request/response (CSR wrapping using existing certificate (IDevID)).
- Allows interaction with on-site and off-site PKI
 - rely on on-site simple store-and-forward (optionally no RA functionality at Domain Registrar)
 - CSR authorization in conjunction with off-site asset management system
- defines/maps certificate waiting indication
- Support for multiple enrollment protocols, which also allows application in domains that already selected different enrollment protocols.
Changes in draft-02: Addressing scheme for multiple enrollment protocol support

• If registrar supports multiple enrollment protocols, an addressing scheme is needed to distinguish between them. Note that enrollment protocol is considered as a sequence of at least a certification request and a certification response message.

• Proposal to follow the BRSKI approach using "/.well-known" tree specified [RFC5785]:

• Proposed notation: "/.well-known/enrollment-protocol/request"

 • *enrollment-protocol*: references EST, CMP, CMC, SCEP, or newly defined approaches, like EST wrapping with OSCORE from ACE WG (draft-selander-ace-coap-est-oscore-01).

 • *request*: describes required operation at the registrar side, e.g., for BRSKI base behavior this would be a "simpleenroll" and for BRSKI-AE a "FullCMCRequest."
Changes in draft-02: Addressing scheme for multiple enrollment protocol support (cont.)

• Discussion / Open Issues
 • Consideration of different transport options in the addressing scheme for the enrollment protocol, like on the example of EST:
 • BRSKI uses EST over HTTPS
 • draft-ietf-ace-coap-est utilizes COAPS to transport EST
 • Selection of a limited set of mandatory enrollment approaches for the infrastructure side to ensure interoperability (allows flexibility for the pledge side by requiring support of just one).
 • Optional discovery mechanism for supported enrollment protocol options at the infrastructure side. Could utilize the defined namespace.
 • IANA considerations for addressing scheme have to be defined.
Next Steps

- Further refinement of the approach. Address open issues and discussion points stated throughout the draft.

- Discussion of operational modes for onboarding based on industrial use cases to leverage the existing architecture elements in different approaches:
 - Currently BRSKI and BRSKI-AE target PULL behavior of the pledge, i.e., pledge acts as client (caller/requestor) and starts onboarding after connectivity to network and power.
 - Further use cases exist, which rely on PUSH behavior, in which the pledge is natively working as server and therefore acting as calleé.

- Goal is reuse of BRSKI/BRSKI-AE architecture elements as much as possible to cope with both modes. → Not asking for adoption of draft this time as further discussion on operational modes seen necessary before incorporating this functionality into the draft.