Real-time text media handling in multi-party conferences

draft-hellstrom-mmusic-multi-party-rtt-00

Presentation in IETF AVTCORE 22 November 2019

Real-time text (RTT) - Basic facts

- Transmit while you create text no special user action for sending
- Provides tight interaction no waiting for completed messages.
- Required for accessibility reasons but useful for all.
- Presentation level standard ITU-T T.140 based on UTF-8 and ISO 6429
- **Transport** for SIP by **RTP** packetization RFC 4103. Robustness by redundancy.
- Transport for **WebRTC** in progress in draft-ietf-mmusic-t140-usage-data-channel. Robustness by "reliable" data channel.
- Specified for NG emergency services, 3GPP IMS, SIP VoIP, relay services.

Multi-party RTT

- Need for multi-party RTT support is mentioned in many specifications.
- No approved SDO-document says how.
- Current user terminals only support two-party view
- Capability negotiation needed for type of multi-party RTT implementation
- Centralized conference server mixing RTT needed when support is negotiated
- Basic requirements: Identify source of text. Separate text from sources. Do not delay text presentation.
- Possibly limited functionality fallback mixing method for cases when terminal has no multi-party support.
- Let user or user app decide on presentation style (see following examples)

A one-column three-party real-time chat-style view

 $^{\sim}$

```
[[Alice] I am coming on Thursday, my
      performance is not until Friday morning.
[Bob] And I on Wednesday evening.
[[Alice] Can we meet on Thursday evening?
[Eve] Yes, definitely. How about 7pm.
      at the entrance of the restaurant
     Le Lion Blanc?
[Eve] we can have dinner and then take a walk
 <Eve-typing> But I need to be back to
    the hotel by 11 because I need
 <Bob-typing> I wou
                                                —
                                                V
| of course, I underst
```

Alice, typing:

A multi-panel view example

Bob	Eve	Alice
	l	
		I will arrive by TGV.
My flight is to Orly		Convenient to the main
	Hi all, can we plan	station.
	for the seminar?	
Eve, will you do		
your presentation on		
Friday?	Yes, Friday at 10.	
Fine, wo		We need to meet befo

Requirements

- Applicable to 3GPP IMS, SIP VoIP, NG Emergency services, relay services
- No longer transmission interval than 500 ms when there is text to send
- Indicate possible text loss by standardized mark in stream
- Display so that text is readable and source identified
- Support erasure and correction
- Support for confidentiality, privacy, integrity and reliable source identification
- Implementable in near-future
- Fallback method for current two-party terminals if found feasible.

draft-hellstrom-mmusic-multi-party-rtt contents

- Methods for coordination of RTP RTT streams pros and cons
- Methods for coordination of WebRTC RTT streams pros and cons
- Method for mixing for conference-unaware devices minimize limitations
- Methods for multi-party RTT capability negotiation pros and cons
- Identification of source of text
- Presentation aspects for multi-party aware devices
- Presentation aspects for multi-party unaware devices
- Robustness and indication of loss
- Performance
- Security
- IANA considerations

Goals

- Discuss the different alternative methods for stream mixing and source identification. Agree on preferred methods.
- Discuss the different alternative methods for multi-party capability negotiation. Agree on a preferred method.
- Discuss the method for conference-unaware devices. Tune for least shortcomings..
- The draft touches topics of many working groups. avtcore, mmusic, sipcore. Arrange discussions in a practical way. E.g. have most discussions in mmusic.

Example discussion topic: coordination of RTP RTT

- 4.1. RTP Translator sending one RTT stream per participant with own SSRC Theoretically ideal, but no support from SDP and installed parc.
- 4.2. RTP Mixer indicating participants in CSRC Some problems in source of redundancy and marking of loss.
- 4.3. RTP Mixer indicating participants by a T.140 control code in the stream Good interop options but may require stream manipulation by mixer.
- 4.4. Mesh of RTP endpoints. No central mixing. Theoretically interesting, but not the favoured model by big implementations
 - 4.5. Multiple RTP sessions, one for each participant Good for separating sources, but high network resource usage
 - 4.6. Mixing for conference-unaware user agents Required fallback for today's UAs. Optimized solution needed..

Example discussion topic: Capability negotiation

- 7.1. Implicit RTT multi-party capability indication (by conference-awareness) Use RFC 4575 conference negotiation. Requires that conference model.
- 7.2. RTT multi-party capability declared by new SIP media-tags Works for SIP. Inexact if more than one text media session is declared.
- 7.3. SDP media attribute for RTT multi-party capability indication Works anywhere were SDP is used.

Considerations

- IETF is the right place: Need for both NENA and 3GPP and others to have a common specification to refer to. IETF is a good common place for all.
- Form: Best Current Practice (BCP) is proposed.
- Urgency: Implementations required early 2021

Looking forward to rapid progress of multi-party RTT.

Thanks,

Gunnar Hellström

Omnitor

gunnar.hellstrom@omnitor.se