IETF #106 - BMWG

Methodology for VNF Benchmarking Automation -05

R. Rosa, C. Rothenberg, M. Peuster, H. Karl
Context, In version -04: Which were the major technical changes?

➔ Filtered only important concepts in Terminology
➔ Considerations on Benchmarking Procedures
 ◆ Generic Phases (I to IV): Deployment, Configuration, Execution, Report
➔ **Refined VNF Benchmarking Descriptor (VNF-BD) structure (Sec. 6.1)**
 ◆ Description Headers: VNF-BD versioning, authorship, description, etc
 ◆ Target Information: VNF (SUT) descriptor (version, image, etc)
 ◆ Experiments: Defines overall VNF-BD parameters: repetition of Trials, Tests, Method
 ◆ Environment: Settings referring to components (e.g., orchestrator) to deploy scenario
 ◆ Scenario: Topology for Tests
 ◆ Proceedings: Agent(s)/Monitor(s) settings for (prober(s)/listener(s)) Test parameters
➔ VNF-BD Yang model updated
➔ Gym updated reference to open source repository
Why the draft was updated?

➔ Needed to unify the models to describe VNF bench. experiments (VNF-BD)
➔ Need of clear considerations regarding VNF Performance Profiles (Sec. 6.2)
➔ We did experimental analysis with VNF-BD and VNF-PP Yang models
 ◆ Comparison factors (i.e., VNF-BD fully functional)
➔ Address comments in the mailing-list written by Luis M. Contreras
➔ More comments are coming in and are work in progress
Which are the major technical changes?

➔ **Refined VNF Performance Profile (VNF-PP) structure (Sec. 6.2)**
 - Description Headers: VNF-PP versioning, authorship, description, etc
 - Reports: structure **Test** results from Agent(s)/Monitor(s)
 - Execution Environment: description of hardware/software specs of VNF-BD scenario
 - Snapshots: structured **Trial** results by each Agent/Monitor
 - Origin: Agent/Monitor identification (id, hostname, etc)
 - Evaluations: structured prober(s)/listener(s) result data (measurements)
 - Source: prober/listener identification (id, tool, version, command call, etc)
 - Metrics: list of metrics provided by prober/listener (name, unit, value, type)

➔ **VNF-BD and VNF-PP models** updated and aligned with IETF Yang specs

➔ Published Gym and Tng-bench comparison tests (ipynb)
 - https://github.com/raphaelvrosa/vnf-bench-model/tree/master/experiments
Models and Example Results

Results recorded by Gym

Results recorded by tng-bench
Which issues are unresolved? Which issues needs further discussion.

➔ VNF Performance Profile in open source reference implementations
 ◆ Fully comparison of VNF-BD and VNF-PP

➔ Structure VNF Benchmark Report
 ◆ Establish yang model for VNF-BR
 ◆ Useful/Summary joint information from VNF-BD and VNF-PP
 • e.g., performance_metrics = F(traffic_workload, allocated_resources, VNF_configuration)

➔ Synergies (alignment/collaboration) with BMWG related work
 ◆ Considerations for Benchmarking Network Performance in Containerized Infrastructures
 ◆ Considerations for Benchmarking Network Virtualization Platforms
 ◆ A YANG Data Model for Network Interconnect Tester Management
 ◆ ... others?
Final Remarks

● Considering:
 ○ Draft in version -05
 ○ Comments in mailing list addressed
 ○ VNF-BD and VNF-PP Yang models
 ○ Reference tools implementing draft methodology

● We ask BMWG to adopt the draft
 ○ We have support from industry and academia (mailing-list comments)
 ○ We are going move forward on refining the draft
 ○ We are going to prototype the VNF-BR Yang model in the reference implementations
Thank you!
Why?

➢ “If VNFs deployments can be fully automated, VNF benchmarking should be automated as well!”
➢ Concept: Design and specify a generic workflow to automatically execute arbitrary pre-defined VNF benchmarking experiments.

We define how to automate the benchmarking process, not how to benchmark → highly depends on the SUT

Two open-source reference implementations

➢ Gym [1][2]
➢ 5GTANGO benchmarker “tng-bench” [3][4]
Figure 1: Generic VNF Benchmarking Setup
Backup

Figure 2: VNF benchmarking process inputs and outputs
Backup: Example Results

- **SUT:** Suricata IDS VNF deployed in a Docker container
- **Parameters**
 - Different IDS rulesets
 - Different number of vCPU cores
 - Different amounts of CPU bandwidth (CPU time)
 - Different memory limits
- **Stimulation**
 - Traffic traces with small and big flows
- **Experiments executed without human interaction using benchmarking descriptors**
- **Everything open:** https://github.com/raphaelvrosa/vnf-bench-model
References