
CBOR (RFC 7049) bis
Concise Binary Object Representation

Carsten Bormann, 2019-03-27

 1

Take CBOR to STD

• Do not: futz around

• Do:

• Focus on interoperability

• Make needed improvements in specification
quality

 2

2019-11-04, <draft-ietf-
cbor-7049bis-09.txt>

• Some 29 issues closed since IETF105

• WGLC started 2019-11-14, ending on  
Thursday, 2019-12-12.

 3

Levels of Errors #45
• (not) well-formed — CBOR Syntax

• Error: Not recoverable (outside diagnostic tools)
• See also Appendix C (pseudocode)

• (not) valid — CBOR Semantics
• Error: Presentable to the application in principle

• (not) expected —  
Application Syntax and Semantics

• This is often expressed in CDDL

 4

G
eneric D

ecoder

Other significant
• Appendix G: Well-formedness errors and examples

• #104 avoid fuzzy concept of “strict mode”;  
#122 avoid painting a “CBOR firewall” concept

• Tighten/clarify JSON-to-CBOR conversion issues

• Bug fix in in well-formed pseudocode (indefinite)

• Validity — next slide

 5

Validity

• Distinguish basic validity (UTF-8, map keys) from
tag validity

• Don’t assume that all generic decoders will do all
possible validity checking — impossible for new
tags, anyway

 6

Remaining issue: #63
• What should be the onus on application protocol

definitions and generic decoding libraries with
respect to duplicate map keys?

• Proposal: No change.
• Do not require all decoders to be validating, so

can’t have a “MUST error out”.
• Many decoders just silently discard duplicates (in

varying ways), so application has little control
• Application can still require validity checking from

their generic decoders, if really needed

 7

CDDL

 8

Nach	dem	Spiel	ist	vor	dem	Spiel  
(After	the	game	is	before	the	game)

Next	steps	on	CDDL  
(RFC	8610)

�9

draft-bormann-cbor-cddl-
freezer

• Collected items that were not done for CDDL 1.0

• Can be thawed now

• What should we pick up?

• Let’s prioritize today

 10

(0) Easily done using CDDL 1.0
extension points (control ops)

• computed literals (base = 400 a = base + 4)

• embedded ABNF

 11

(0.1) computed literals

• Zwei = 1 .plus 1

• Dogfood = “dog” .cat “food”

• Proposal: .plus .minus .cat for now

 12

(0.2) ABNF
• .abnf: control operator on text strings

• Number = text .abnf “1*(%x30-39)”

• Number = text .abnf (“number” .cat myabnf) 
myabnf = ‘  
 number = 1*DIGIT  
 DIGIT = %x30-39  
‘  
(little trick: use byte string notation, as that allows newlines)

• Careful: need ABNF both for bytes and for characters
(codepoints); proposal: .abnfbyte and .abnf

 13

(1) Extend the  
function of CDDL

• Today: CDDL specification is a predicate on a
CDDL instances, matches? ➔ true/false

• Could return more information, cf. PSVI (post
schema-validation instance) in XML

• E.g., defaulting

• E.g., semantic augmentations

• E.g., transformations

 14

(2) Extend the
Expressiveness of CDDL

• Cuts (e.g., for whole map members)

• Co-occurrence constraints (next slide)

 15

(2.1) Co-occurrence
constraints

• Predicates

• Pointers/Selectors

 session = { … timeout: uint, … }

 other-session = {

 timeout: uint .lt [somehow refer to session.timeout],

 }

 16

(3) Syntactic Sugar

• tag-oriented literals — dt’2019-07-21T19:53Z'

• ➔ transformations at the specification level

• regular expression literals

 17

(4) CDDL in the large

• Module superstructure

• Namespacing

• Import/Export (relating to URIs?)

• Versioning

• Variants (think #ifdef)

 18

(99) Using CDDL for  
JSON and CBOR

• Support embedded JSON: .json operator (no-
brainer)

• Maintain a single specification for both JSON and
CBOR serialization: requires variants

• Separate issue: Enable use of JSON for CDDL
representation, enabling tool interoperation
(“CDDLJ”, next slides)

 19

Alternative Representations (1)
 cddlj = ["cddl", +rule]
 rule = ["=" / "/=" / "//=", namep, type]
 namep = ["name", id] / ["gen", id, +id]
 id = text .regexp "[A-Za-z@_$](([-.])*[A-Za-z0-9@_$])*"
 op = ".." / "..." /
 text .regexp "\\.[A-Za-z@_$](([-.])*[A-Za-z0-9@_$])*"
 namea = ["name", id] / ["gen", id, +type]
 type = value / namea / ["op", op, type, type] /
 ["map", group] / ["ary", group] / ["tcho", 2*type] /
 ["unwrap", namea] / ["enum", group / namea] /
 ["prim", ?(0..7, ?uint)]
 group = ["mem", null/type, type] /
 ["rep", uint, uint/false, group] /
 ["seq", 2*group] / ["gcho", 2*group]
 value = ["number"/"text"/"bytes", text]

 20

Alternative Representations (2)
 labeled-values = {
 ? fritz: number,
 * label => value
 }
 label = text
 value = number
➔
["cddl",
 ["=",
 ["name", "labeled-values"],
 ["map",
 ["seq",
 ["rep", 0, 1, ["mem", ["text", "fritz"], ["name", "number"]]],
 ["rep", 0, false, ["mem", ["name", "label"], ["name", "value"]]]]]],
 ["=", ["name", "label"], ["name", "text"]],
 ["=", ["name", "value"], ["name", "number"]]]

 21

Should there be a CDDL
roadmap WG document?

• Could adopt something like -freezer as WG
document

• No intent to ever publish as an RFC
• But an “official” document with (at least a snapshot

of) directions that are moving towards consensus
• Document the priorities

 22

