Deoxys

A Proposal for Beyond-Birthday Nonce-Misuse Authenticated Encryption

Thomas Peyrin

NTU - Singapore

CFRG - IETF 106 Meeting Singapore - November 20, 2019

Outline

• The Deoxys-BC TBC

The SCT Authenticated Encryption Mode

The ZMAC MAC and ZAE AEAD modes

What is a authenticated encryption?

Authenticated Encryption = Authentication + Encryption

Goal of authenticated encryption:

- avoid numerous issues that can arise when using separate
 authentication and encryption primitives
 (https://competitions.cr.yp.to/disasters.html)
- ▶ efficiency gain
- ▷ add feature of having authenticated-only data :Authenticated Encryption with Associated Data (AEAD)

Hot topic:

5-year CAESAR competition (2014-2019):

Competition for Authenticated Encryption : Security, Applicability, and Robustness

What is beyond-birthday security?

Problem : Most cipher modes have security bounds in $q^2/2^{128}$ for a 128-bit cipher (birthday bounds), q is number of queries.

This means that after about 2^{64} data all security is lost.

Examples: OCB, AES-GCM, etc. provide only birthday bounds.

Solution : Beyond birthday modes provide beyond $2^{n/2}$ security, potentially up to full 2^n .

This effectively avoids strong data constraints issues.

Security claims - a comparison of the nonce-respecting case

What is nonce-misuse resistance?

Problem : Most cipher modes will have their security completely removed if the nonce is repeated just a single time.

This creates a lot of problems:

- ▶ if the nonce is generated randomly : need to make sure of proper randomness source
- if the nonce is a counter: need to constantly maintain a state
- other mechanisms required to make sure no repetition

Examples: OCB, AES-GCM, etc. are completely broken if the nonce is repeated just once (universal forgery and decryption)

Solution : Nonce-misuse resistant modes will maintain security even if the nonce is repeated, a really robust defence in depth feature.

Outline

The SCT Authenticated Encryption Mode

The ZMAC MAC and ZAE AEAD modes

Deoxys-BC

WINNER OF THE CAESAR COMPETITION (Defense in depth portfolio)

Paper, Specifications, Results and Updates available at: https://sites.google.com/view/deoxyscipher/

What is a (tweakable) block cipher?

Block cipher (BC): a family of permutations parametrized by a secret key *K*. **Example:** AES

Tweakable block cipher (TBC): a family of permutations parametrized by a secret key *K* and a tweak value *T* [LRW02]. **Example:** Deoxys-BC

The Deoxys-BC tweakable block ciphers

- ▶ The round function is exactly the AES round function
- $\triangleright h'$ is a simple permutation of the bytes positions
- ▶ The LFSRs can be clocked with a single XOR
- ▶ Constant additions to break symmetries (RCON from AES KS)

Deoxys-BC security and efficiency

2 versions: Deoxys-BC-256 and Deoxys-BC-384

128-bit tweakable block ciphers

- Deoxys-BC-256: 14 rounds and 256-bit tweakey
- Deoxys-BC-384: 16 rounds and 384-bit tweakey
- ▶ Security guarantees for differential/linear cryptanalysis (both single and related-key)
- ▶ A lot of 3rd party cryptanalysis since 2014, still comfortable security margin
- Reuses analysis already performed on AES
- ▶ Accepts 256-bit keys (post-quantum security)
- ▶ Very efficient software implementations (mostly AES round function), on Skylake (avx2) for fixed key:
 - \circ 0.87 c/B for Deoxys-BC-256
 - \circ 0.99 c/B for Deoxys-BC-384
- no patent

Outline

• The Denxys-BC TBC

The SCT Authenticated Encryption Mode

The ZMAC MAC and ZAE AEAD modes

Deoxys-BC

- SCT AEAD mode -

T. Peyrin, Y. Seurin CRYPTO 2016

WINNER OF THE CAESAR COMPETITION (Defense in depth portfolio)

Deoxys-II = Deoxys-BC + SCT

Paper, Specifications, Results and Updates available at:

The SCT authenticated encryption mode

SCT is:

- ▷ a simple TBC-based AEAD mode
- ▶ 2 pass mode (because of nonce-misuse resistance)
- ▶ with full *n*-bit security in nonce-respecting scenario
- with n/2-bit security in nonce-misuse scenario (but linear degradation of security with the maximal number of nonce repetition, so in practice $\sim n$ -bit security). Strong MRAE security notion.
- ▶ when instantiated with Deoxys-BC, it is very efficient
- no precomputation, almost no overhead for small messages
- ▶ fully parallel, inverse-free
- extra tweak input for other purposes (leakage resilience)
- provably secure (security proofs in the article)
- ▶ no patent

The SCT AEAD mode

Outline

• The Deoxys-BC TBC

The SCT Authenticated Encryption Mode

The ZMAC MAC and ZAE AEAD modes

Deoxys-BC

T. Iwata, K. Minematsu, T. Peyrin and Y. Seurin CRYPTO 2017

Paper and Specifications available at :

https://eprint.iacr.org/2017/535.pdf

The ZMAC MAC mode

The ZAE AEAD mode

The ZMAC MAC mode and ZAE AEAD mode

ZMAC and ZAE are:

- □ a TBC-based MAC mode and a TBC-based AEAD mode
- ▶ with full *n*-bit security for both the nonce-respecting and nonce-misuse scenario (strong MRAE sense)
- \triangleright can handle n+t bits of message per TBC call (optimal)
- ▶ when instantiated with Deoxys-BC, it is faster than PMAC-AES, with a much higher security!
- fully parallel, inverse-free
- extra tweak input for other purposes (leakage resilience)
- provably secure (security proofs in the article)
- ▶ no patent

Deoxys-BC

AES-GCM-SIV - Deoxys-II - ZAE

Comparison of Deoxys-II and ZAE with AES-GCM-SIV

- winner of the CAESAR competition, well scrutinized
- ▶ much simpler and flexible than AES-GCM-SIV
- ▷ GCM family very sensitive to timing attacks, while trivial and efficient constant time impl. for Deoxys-II and ZAE
- higher security: for 2³² messages of 64 KB each, attacker advantage for authenticity is
 - \circ 2⁻³⁷ for OCB (1 in nonce-misuse)
 - \circ 2⁻⁷³ for AES-GCM-SIV (2⁻⁴¹ in nonce-misuse)
 - 2^{-94} for Deoxys-II (2^{-51} in nonce-misuse)
 - 2^{-144} for ZAE (2^{-144} in nonce-misuse)
- more efficient in hardware, inverse-free
- ▷ can easily offer the Deoxys-I mode (twice faster, full 128-bit security for nonce-respecting)
- tweak input can be used for many other things: disk encryption, leakage resilience, hashing, sessions, etc.

Comparison of Deoxys-II and ZAE with AES-GCM-SIV

Software efficiency estimations (in AES rounds):

 $1~{\rm GF}(2^{128})$ mult. $\simeq 6~{\rm AES}$ rounds - actually more on ARM $1~{\rm AES}$ Key schedule $\simeq 10~{\rm AES}$ rounds

	M block	A block	init/tag	
AES-GCM-SIV	16	6	66	
Deoxys-II	28	14	14	
ZAE	21	7	56	

Internet Mix efficiency estimations (in AES rounds): 7 packets of 40B, 4 packets of 576B, 1 packet of 1500B

	40 Bytes	576 Bytes	1500 Bytes
AES-GCM-SIV	114	642	1570
Deoxys-II	98	1022	2646
ZAE	119	812	2030

Nonce-respecting AEAD: Deoxys-I

Deoxys-I is similar to TAE or OCB

For associated data authentication:

For plaintext:

