$$d(aG) = (da)G$$
Scalars \longrightarrow Points

*G

$\begin{array}{c}
d* \\
V
\end{array}$ $\begin{array}{c}
d* \\
V
\end{array}$

Scalars \longrightarrow Points

*G

$d(aG) = (da)G$

Not true for X25519 / X448!
Scalars \rightarrow Points

\[d^* \quad \text{d}^* \quad \text{d}^* \]

\[V \quad \text{V} \quad V \]

Scalars \rightarrow Points

\[d(aG) = (da)G \]
Problem: “Clamping” -- high order bit is set in decodeScalar()

Observation:

- If x is not clamped, then $n - x$ is almost always clamped
- $X25519/X448$ operations are not sensitive to sign

So “mult” can just take whichever of $(x, n - x)$ is clamped
Multiplication?

For some x, neither x nor $(n - x)$ is clamped, in which case multiplication fails.

Fortunately, this is extraordinarily rare:

- $X25519$: 2^{-125}
- $X448$: 2^{-222}

Private key holder can detect failure, public key holder cannot.
Questions

Interest in this specific question, or updateable PKE that arises from it?

Comments on the technical content? Errors / improvements?

Is this a safe operation? If d is attacker controlled, does attacker gain knowledge of da?

Good material for a CFRG doc?