
Directions for COIN
draft-kutscher-coinrg-dir-01

Dirk Kutscher, Jörg Ott, Teemu Kärkkäinen

22 November 2019 – IRTF COINRG

1



Reminder: Outline

• What does in-network really mean?
• Exploring numerous (present and future) options

• Some thoughts on computing
• Looking at code and its provisioning, execution, etc.

• What could/should COIN look at?

2



What does “in-network” really mean?

3



Lots of Computing “in the Network“ Today

• SmartNICs
• Web servers
• CDNs
• Cloud platforms
• Note: Some forms of „Edge Computing“ are merely about extending the

cloud computing concept to specific hosts at the edge

• These approaches are applied (more or less) successfully today and do not 
need COIN research…

• ...but there is lots of engineering to be done in the IETF

4



Example: Mobile Edge Computing

https://datatracker.ietf.org/meeting/98/materials/slides-98-nfvrg-sessb-12-multi-access-edge-computing-mec-applications-005



Example: Streaming Frameworks

6

• Elaborate services and guarantees for different use cases
• Apache Flink: Different streaming connectors — but typically as network overlays



Decoupling Computing from the Network

7

Host Network Host

Transport

Security



8

Host Network Host

Transport

Security

• Circuit-like connectivity
• Limited visibility into network

• Different namespaces
• DNS, discovery

• Trust often centralized
• PKIs for TLS certificates etc.

Decoupling Computing from the Network



• Do not require fixed locations of data and computation
• Can lay out processing graphs flexibly – meeting requirements optimally
• Sometimes we can move functions (to be close to large data assets)
• Sometimes we gradually move data where it is needed (e.g., where specific computations run)

• Conditions may change dynamically and constantly: network to adapt to application 
requirements, network conditions etc. 

• Optimization based on application requirements & view of all relevant resources

9

Computing in the Network



https://builders.intel.com/blog/implementing-dynamic-service-function-chaining-for-gi-lan-uses/

Version 01 Updates (1/3) 
Service Function Chaining

10

https://builders.intel.com/blog/implementing-dynamic-service-function-chaining-for-gi-lan-uses/


Version 01 Updates (1/3)

• Service Function Chaining (SFC) for connecting compute
• In general: SFC is flow (packet) steering
• Forwarding encapsulated packets to IP hosts
• Background: connecting VNFs (often in telco cloud)
• RFC 8677: naming function & mapping to lower layer identifiers
• Also: specify hop-by-hop transport between pairs of SFC nodes
• Could be used to construct compute graph between application

layer functions

11



Version 01 Updates (2/3)

• Multi-Access Edge Computing (MEC)
• Added text on MEC as a platform
• Mentioned possible combination with network slicing

12



Compute First Networking: Distributed 
Computing meets ICN

Michał Król1, Spyridon Mastorakis2, Dave Oran3, Dirk Kutscher4

1University College London/UCLouvain
2University of Nebraska, Omaha

3Network Systems Research & Design
4University of Applied Sciences Emden/Leer

Version 01 Updates (3/3)

13

Example:



Motivation

• Computing in the Network is about treating computing as a first-class 
citizen in the system

• Reasoning about networked computation
• Scalable
• Secure
• Reliable (congestion-controlled, fail-safe etc.)
• Useful for application developers

• Not just about controlling packet forwarding
• Through tunnels, routing updates etc.

14



Concept

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• Nodes in a network
offering compute
services

• Agnostic to specific
execution
environment

• But be able to
leverage different 
platforms (GPUs, TEE) 
and select
appropriate ones

15



Concept

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• Nodes could part of a 
distributed
application context

• Nodes could be part
of more than one
context at a time

16



Concept

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• In a distributed
application session, 
the system can
instantiate/invoke
functions, actors as
required

• 3 types:
• Stateless functions
• Stateless actors
• Data

• Application semantics
and resource
allocation strategies
determine where
functions/actors reside

17



Concept

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• RMI protocol for
invoking stateless
functions and actor
member functions

• No assumption on 
function complexity, 
execution time

• Function calls can
trigger other calls etc.

18



Concept

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

Information in the system
• „Where are functions“
• Resource utilization
• Performance

• Also: availability of
unallocated resources
(nodes)

• Info maintained by
distributed data
structures

• Concept of using
routing system to
distribute some of this
info 19



COIN Elements in CFN-ICN

20

Logical Function Implementation in Current Design

Resource availability / load
information dissemination

CRDTs (distributed data structure)

Transport and RMI Model RICE (Remote Method Invocation in ICN)

RMI Steering ICN Forwarding Hints

Programming & Execution
Environment

Python (in this PoC)

Compute Classes Stateless functions, stateful actors, data

Function Naming ICN naming



Overview

Scoped resource advertisements

Task Scheduler



Terminology
● Program - a set of computations requested by a user. 
● Program Instance - one currently executing instance of a program
● Function - a specific computation that can be invoked as part of a 

program.
● Data - represents function outputs and inputs or actor internal state.
● Future - objects representing the results of a computation that may not 

yet be computed.
● Worker - the execution locus of a function or actor of a program 

instance



Code
Decorators:

● @cfn.transparent
● @cfn.opaque
● @cfn.actor

Methods:

● cfn.get(future)



Code
Decorators:

● @cfn.transparent
● @cfn.opaque
● @cfn.actor

Methods:

● cfn.get(future)



Computation Graph
● Location of the data
● Chaining nodes using ICN names
● Different node types

● Graph is a CRDT
● Non-conflicting merge 

operations (set addition)



Computation Graph
In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node1 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3



Computation Graph

In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node2 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3

In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node1 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3



Computation Graph
In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node1, node2 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3



Task Scheduler

● Functions are invoked close to the data they rely on
● Forwarding hints to steer traffic
● Dependency information + data info are in the computation graph
● Each decision can be optimized by other forwarding nodes (late binding)
● The exact node is chosen using information from scoped resource 

advertisements

A B C

D
C is 
overloaded. 
Send to D.



Example



CFN-ICN Summary
● Distributed computation framework

for general purpose computation
● Uses Computation Graph, Resource advertisement protocol

and a scheduler 
● Includes Transport and RMI functionality (RICE)
● Demonstrates feasibility of distributed approach
● Join optimization of network and computation resources
● Check paper for details (ACM ICN-2019)
● Code available at https://github.com/spirosmastorakis/CFN

https://github.com/spirosmastorakis/CFN


Outlook
● Want to enable more decentralized decision-making in the network

● Consider dynamic network & platform load

● Think about QoS for computing and specific worker capabilities

● Soft-state approach: reduced coordination and state-keeping

● ICN to the rescue: late-binding, path steering



Suggestions
• Computing in the Network: More than just forwarding

packets to nodes that happen host VMs or processes
• Can be done today with various tools

• Embrace the idea of supporting distributed computing
by leveraging networking concepts and mechanisms

• Instead of building better pipes between processes



Next Steps for Draft

• Document more representative use cases

• Mention segment routing as another packet steering technology

• Some form of taxonomy to aid discussion in COINRG

• Overall goal: help us understand problem – not so much prescribing
solutions


