Directions for COIN

draft-kutscher-coinrg-dir-01

Dirk Kutscher, Jorg Ott, Teemu Karkkainen

22 November 2019 — IRTF COINRG

Reminder: Outline

 What does in-network really mean?
* Exploring numerous (present and future) options

* Some thoughts on computing
* Looking at code and its provisioning, execution, etc.

 What could/should COIN look at?

What does “in-network” really mean?

Lots of Computing “in the Network” Today

* SmartNICs

* Web servers

* CDNs

e Cloud platforms

* Note: Some forms of ,Edge Computing” are merely about extending the
cloud computing concept to specific hosts at the edge

* These approaches are applied (more or less) successfully today and do not
need COIN research...

 ...but there is lots of engineering to be done in the IETF

Example: Mobile Edge Computing

Mx1
} Operations Support System
= ¥
Mx2 W=
25
Mobile Edge 2%
Orchestrator =
Mp3
? = Mm4
ME app ME
Dthe ’ platform rules & app —
obile Mobile element reqts lifecycle S
dge Edge mgmt mgmt mgmt f
platform 1
. - g
Mobile Edge 8
Platform Manager B
=2
. 2
”ob"r. Virtualisation Virtualisation =
Edge Infrastructure Infrastructure Manager
Host Mobile Edge Host Mm7

https://datatracker.ietf.org/meeting/98/materials/slides-98-nfvrg-sessb-12-multi-access-edge-computing-mec-applications-00

Example: Streaming Frameworks

Sﬁ"b”r

Transactions

Logs
10T

Y

Clicks

(Real-time)
Events

(D —
5= —

Database,
File System,
KV-Store

katka.

A distributed streaming platform

Event-driven Streaming
Applications Pipelines

Stream & Batch
Analytics

.

(K8s, Yarn, Mesos,

Resources | Storage
...) | (HDFS, S3, NFS,

@&
@& —

)

©) samza

— [

— (N
— [E=F

® Elaborate services and guarantees for different use cases
® Apache Flink: Different streaming connectors — but typically as network overlays

Application

Event Log

Database,
File System,
KV-Store

Decoupling Computing from the Network

@ é@-

Host Network Host

Decoupling Computing from the Network

* Circuit-like connectivity

* Limited visibility into network
* Different namespaces

* DNS, discovery
* Trust often centralized

* PKils for TLS certificates etc.

Computing in the Network

* Do not require fixed locations of data and computation
* Can lay out processing graphs flexibly — meeting requirements optimally
* Sometimes we can move functions (to be close to large data assets)
* Sometimes we gradually move data where it is needed (e.g., where specific computations run)

* Conditions may change dynamically and constantly: network to adapt to application
requirements, network conditions etc.

* Optimization based on application requirements & view of all relevant resources

Version 01 Updates (1/3)
Service Function Chaining

Gateway GPRS
Support Node

3
3
: |
3
: |

g

—

Beyond
— the Edge
CDN
= T T
=
= Switch L2 Load Video/Web Switch Firewall Provider
Packet Switch Balancer Optimizer Edge

Gateway Pool Pool

Available Network Resources
PCRF OCS IWF Analysus OSS DNS

CDN - content delivery network; CGNAT - Steering/Carrier Grade Network Address Translation; DPI - deep packet inspection; DNS - domain name system;

GPRS - General Packet Radio Service; IWF — interworking function; LI - lawful interception; OCS - online charging system; OSS — operational support system;
PCRF - policy and charging rules function

https://builders.intel.com/blog/implementing-dyhamic-service-function-chaining-for-gi-lan-uses/

https://builders.intel.com/blog/implementing-dynamic-service-function-chaining-for-gi-lan-uses/

Version 01 Updates (1/3)

* Service Function Chaining (SFC) for connecting compute
* In general: SFC is flow (packet) steering
* Forwarding encapsulated packets to IP hosts
* Background: connecting VNFs (often in telco cloud)
* RFC 8677: naming function & mapping to lower layer identifiers
* Also: specify hop-by-hop transport between pairs of SFC nodes

* Could be used to construct compute graph between application
layer functions

Version 01 Updates (2/3)

* Multi-Access Edge Computing (MEC)
* Added text on MEC as a platform
* Mentioned possible combination with network slicing

Version 01 Updates (3/3)
Example:

Compute First Networking: Distributed
Computing meets ICN

Michat Krol?, Spyridon Mastorakis?, Dave Oran3, Dirk Kutscher?®

lUniversity College London/UCLouvain
2University of Nebraska, Omaha
3Network Systems Research & Design
4University of Applied Sciences Emden/Leer

Motivation

 Computing in the Network is about treating computing as a first-class
citizen in the system

* Reasoning about networked computation
* Scalable
* Secure
* Reliable (congestion-controlled, fail-safe etc.)
e Useful for application developers

* Not just about controlling packet forwarding
* Through tunnels, routing updates etc.

Concept

/node/r4/a

/node/r4/b

/node/r3/b

/node/r3/a

/node/rl/a

/node/r2/a

/node/r4/c

/node/r1/b

Nodes in a network
offering compute
services

Agnostic to specific
execution
environment

But be able to
leverage different
platforms (GPUs, TEE)
and select
appropriate ones

15

Conce pt * Nodes could part of a
distributed

application context

- - - * Nodes could be part
of more than one

/node/r4/a /node/r4/b /node/r4/c .
context at a time

/node/r3/a /node/r3/b

/node/r2/a

/node/r1/a /node/r1/b

16

COHCG pt * In a distributed

application session,
the system can

-r AWE> e
functions, actors as

/node/r4/a /node/r4/b /node/r4/c

required
* 3 types:
o O » Stateless functions
frodelrs frodelsle * Stateless actors
* Data

Application semantics
and resource
allocation strategies
/node/r1/a /node/r1/b determine where
functions/actors reside

/node/r2/a

17

COHCG pt « RMI protocol for

invoking stateless
functions and actor
member functions

* No assumption on
function complexity,
execution time

* Function calls can
trigger other calls etc.

/node/r4/a /node/r4/b

/node/r3/a

/node/r4/c

/node/r3/b

/node/r2/a

/node/rl/a /node/r1/b

18

Information in the system
Conce pt « _Where are functions”

 Resource utilization
e Performance

/node/r4/a /node/r4/b

/node/r3/a

* Also: availability of
unallocated resources
(nodes)

/node/r4/c

/node/r3/b

* Info maintained by
distributed data

structures
/node/r2/a

Concept of using

routing system to
distribute some of this
info 1

/node/rl/a /node/r1/b

COIN Elements in CFN-ICN

Logical Function Implementation in Current Design

Resource availability / load CRDTs (distributed data structure)
information dissemination

Transport and RMI Model RICE (Remote Method Invocation in ICN)
RMI Steering ICN Forwarding Hints
Programming & Execution Python (in this PoC)

Environment

Compute Classes Stateless functions, stateful actors, data

Function Naming ICN naming

Overview

Task Scheduler

Shared Computation Graph

Scoped resource advertisements

Terminology

o Program - a set of computations requested by a user.

o Program Instance - one currently executing instance of a program

o Function - a specific computation that can be invoked as part of a
program.

o Data - represents function outputs and inputs or actor internal state.

o Future - objects representing the results of a computation that may not
yet be computed.

o Worker - the execution locus of a function or actor of a program
Instance

Code

Decorators:

e @cfn.transparent
e @cfn.opaque
e @cfn.actor

Methods:

o cfn.get(future)

class CoughAnalyzer:

def

def

##class state
coughs = []
alert = False

def addSample(self, sample_f, features_f):

sample, features =
coughs.append ([sample, features])
if diseaseDetected(coughs):

alert = True

removeSpeech(sample_f):

sample =

remove speech from the sample
return anonymized_sample

extractFeatures(sample_f):
sample =

analyze the sample
return features

HAeHHHABAHHER maln HHEHHHHHSHHHY
analyzer = CoughAnalyzer ()
while True:

sample_f = recordAudio()

anonymized_sample_f = removeSpeech(sample_f)
features_f = extractFeatures(anonimized_sample_f)

analyzer.addSample (anonymized_sample_f ,

features_f)

|@cfn.actor |
class CoughAnalyzer:
#class state

coughs = []

COde alert = False

|@cfn.transparent|
def addSample(self, sample_f, features_f):
DecoratorS: sample, features = |cfn.get(sample_f, features_f')|
coughs.append ([sample, features])
if diseaseDetected(coughs):

e @cfn.transparent alert = True
* @Cfn'opaque l@cfn.opaque|
def removeSpeech(sample_f):
* @Cfn'aCtor sample = |cfn.get(sample_f) |
remove speech from the sample
Methods. return anonymized_sample

|@cfn.transparent|
def extractFeatures(sample_f):

o cfn.get(future) sample - |cfn.get (sample f)]

analyze the sample
return features

HAeHHHABAHHER maln HHEHHHHHSHHHY

analyzer = CoughAnalyzer ()

while True:
sample_f = recordAudio()
anonymized_sample_f = removeSpeech(sample_f)
features_f = extractFeatures(anonimized_sample_f)
analyzer.addSample (anonymized_sample_f , features_f)

Computation Graph

« Location of the data « Graphisa CRDT
« Chaining nodes using ICN names « Non-conflicting merge
« Different node types operations (set addition)

e e e

: referentially () referentially [] data # input hash

......... » opaque 3 transparent I & uniqueid

lAnaIyzer/append/()

N Y
[maln/ }—»LAnalyzer/lnlt/()] anonymlzeAudlo/& [extractFeatures/] EAnaIyzer/apend/(#)]
e T
N P —
@O?P_v_m_'z_@éyﬁ_'?{%___ extractFeatures/(#} -

Computation Graph

In Name: /extractFeatures/(#) Out
/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1
Location: node1 /extractFeatures/(#)/r2

lextractFeatures/(#)/r3

Computation Graph

In Name: /extractFeatures/(#) Out
/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1
/extractFeatures/(#)/r2
/extractFeatures/(#)/r3

In Name: /extractFeatures/(#) Out
/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1
/extractFeatures/(#)/r2
/extractFeatures/(#)/r3

Computation Graph

In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

/extractFeatures/(#)/r2

/extractFeatures/(#)/r3

Task Scheduler

e Functions are invoked close to the data they rely on

e Forwarding hints to steer traffic

o« Dependency information + data info are in the computation graph

o Each decision can be optimized by other forwarding nodes (late binding)

e The exact node is chosen using information from scoped resource
advertisements

Cis

overloaded. D
: > B

def

def

def

Example

0):

return random()

(future):

my_input = get(future)
compute(my_1input)

0):

f1_future = f1() <«

f2(f1_future)

1) execute /f1/() >

2) future /f1/()/rl

4) execute /f2/(#))

-<—

5) future /f2/(#)/r1

3)schedule f1 on NodeB >

a main()

Task Scheduler

£

7)update graph

Task Scheduler

-

IR } f1/() :;NodeB

........ o

NodeA|mai:n/() L0V

NodeB

9) request f2 input

f2(f1/()/r1) INodeC
(2(/0rr1) 8)get f2 input thunk

Shared Computation Graph

NodeA

6)schedule f2 on NodeC

£ =

Task Scheduler

NodeC

CFN-ICN Summary

« Distributed computation framework
for general purpose computation

o Uses Computation Graph, Resource advertisement protocol
and a scheduler

« Includes Transport and RMI functionality (RICE)

« Demonstrates feasibility of distributed approach

« Join optimization of network and computation resources

o Check paper for details (ACM ICN-2019)

o Code available at https://github.com/spirosmastorakis/CFN

https://github.com/spirosmastorakis/CFN

Outlook

« Want to enable more decentralized decision-making in the network
« Consider dynamic network & platform load

« Think about QoS for computing and specific worker capabilities

« Soft-state approach: reduced coordination and state-keeping

« ICN to the rescue: late-binding, path steering

Suggestions

* Computing in the Network: More than just forwarding
packets to nodes that happen host VMSs or processes

* Can be done today with various tools

* Embrace the idea of supporting distributed computing
by leveraging networking concepts and mechanisms

* Instead of building better pipes between processes

Next Steps tfor Draft

 Document more representative use cases
* Mention segment routing as another packet steering technology
* Some form of taxonomy to aid discussion in COINRG

* Overall goal: help us understand problem — not so much prescribing
solutions

