Transport Issues of Computing in the Network

https://www.ietf.org/id/draft-kunze-coinrg-transport-issues-00.txt

Ike Kunze, Klaus Wehrle
Original design principle
- All computing (=modifying application payload) is done at the network endpoints
- Classic notion of an end-2-end transport session
- Except for “some” transparent middleboxes changing headers
End-to-end Principle with Computing in the Network?

- **COIN**
 - Purposefully and explicitly process packets in the network (either Edge-clouds or on-path)
 - Breaking the end-to-end principle between source and destination
 - Here: Concatenation of multiple transport sessions: E-2-E + E-2-E ... + E-2-E (basically service chaining)
 - Makes transport issues easier, but loses E-2-E notion between source and destination
 - Concatenation of intermediate end-points will then be an application issue
End-to-end Principle with Computing in the Network?

- **COIN**
 - Purposefully and explicitly process packets in the network (either Edge-clouds or on-path)
 - Breaking the end-to-end principle between source and destination
 - Here: Keeping E-to-E notion between source and destination
 - Requires new or adapted transport protocols $E-I_1-I_2-\ldots-I_n-E$ (End-to-Intermediate-to-Intermediate-to-Intermediate-\ldots-to-End)
 - Concatenation of intermediate elements is handled on layer 3 and 4, will be configured by application via API
Intention of draft-kunze-transport-issues

- There is no simple solution

- Start a discussion about how the issues should be addressed
 - Connecting discussions of different groups of the IETF/IRTF
 - Plus issues that are not addressed yet

- This draft as a starting point, raising open issues
 - Addressing
 - Flow Granularity
 - Authentication
 - Security
 - Advanced Transport Features
Addressing

Addressing options

- Whom to address?
 - Address based: sequence of IP + port?
 - Content/function based: specify the compute function? Anycast mode?
 - Or location-based?

- How strict to address?
 - Loose routing
 - Strict routing

- What kind of communication pattern among functional units?
 - 1:1, 1:n, n:m

SPRING WG:
Segment Routing using MPLS and IPv6
Flow Granularity

What is the processing granularity?

- Packet-based? - no/little state required in processing nodes
- Message-based? - medium/high state required ...
- Stream-based? - state required on application (low to high state required)
Authentication

- Which switch has done the changes?
 - What was changed?
 - Who made the changes?
 - How synchronizing states?

- How to authenticate packet modifications made by intermediate nodes?

ACE WG (Authentication and Authorization for Constrained Environments)
In-network processing currently working on plain text data
- Encrypted payload is an option that should not be ruled out
- New transport protocols (eg. QUIC) encrypt headers & payload

How can in-network computing work on encrypted data?
- Decryption in intermediate nodes?
- Option headers with payload for intermediate nodes? Possibly encrypted with session keys?
- Homomorphic encryption?
Advanced Transport Features - Retransmissions

Who does the retransmission?
1. Sender
2. Last successful position

How to deal with (changed) state in the intermediate nodes when packet is dropped later on the path?
- Do we want the notion of a transaction that should be revocable?

LOOPS BOF (Local Optimizations on Path Segments)
- Local packet loss recovery
Advanced Transport Features

- **Other features that cause similar questions of "who is in charge?"**
 - Congestion control
 - Flow control
 - Flow ordering/Sequence numbers

- **Different features impose different requirements**

- **Which set of transport features should be supported by COIN?**
 - Depends on application …
Application Scenarios

- **Required transport feature set depends on application scenario**

<table>
<thead>
<tr>
<th>Datacenter</th>
<th>Industrial networks</th>
<th>Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full control over network</td>
<td>Full control over network</td>
<td>Little to no control over the whole network</td>
</tr>
<tr>
<td>High load</td>
<td>Low-latency communication</td>
<td>Untrusted nodes involved</td>
</tr>
<tr>
<td>Reliable communication needed</td>
<td>Reliable communication needed</td>
<td>Encrypted traffic</td>
</tr>
<tr>
<td>Retransmissions</td>
<td>No retransmissions</td>
<td>Diverse application needs</td>
</tr>
<tr>
<td>Congestion control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- **Solutions to the transport issues vital for the success of COIN**
 - One-fits-all solution unlikely
 - Highly application-specific requirements

- **Create awareness and consider expertise of other IETF/IRTF groups!**
 - Addressing: SPRING WG
 - Authentication: ACE WG
 - Retransmissions: LOOPS BOF
 - ...

- **Goal until next meeting:**
 - Collect feedback on raised questions and suggest first transport solutions