
Jörg Ott

Teemu Kärkkäinen

22 November 2019

https://www.cm.in.tum.de/

User-driven in-network computing
at the (IoT) edge

© 2019 Jörg Ott 1

https://www.cm.in.tum.de/


• Internet of Things
• Specific device capacities rather than just generic compute power
• Resources not always easy to scale

• Mobile users
• Location dependencies rather than “arbitrary” function placement as a 

function of RTT
• Local orchestration
• Responsibility in on mobile devices

• Decomposition
• Reusable – possibly stateless – functions
• Fine granularity
• Dynamic instantiation of processing graphs (DAGs)

© 2019 Jörg Ott

Context

2



• Cloud-driven operation
• CDN-style: Functions being pushed from the cloud towards the user
• Doesn’t change the fundamental nature of centralized operation

• User-/Device-driven operation
• Functions are received from and invoked by the user on demand

Two models to provisioning

© 2019 Jörg Ott 3



• Searching for devices in the vicinity
• Access points, cell towers, embedded systems with computing power
• Sensors and actuators

• Discovery and service / function identification
• Service composition by combining functions from devices
• Mobile code execution by pushing functions to devices

User-driven model

© 2019 Jörg Ott 4



1. Lua-based mobile code execution
2. Trigger-action framework leveraging Bluetooth Low Energy 

Beacons for networking

Commonalities
• Client-driven
• Microcontrollers
• Broadcast networks with strictly local discovery
• (Extension via Internet feasible but not yet integrated)

© 2019 Jörg Ott

Two Examples

5



1. Lua-based Mobile Code Execution
• Instance of a mobile, pervasive computing environment

© 2019 Jörg Ott

Fiona Guerin, Teemu Kärkkäinen, Jörg Ott: Towards a Programmable World: Lua-based Dynamic
Local Orchestration of Networked Microcontrollers. Proc. of the ACM MobiCom Workshop on
Challenged Networks (CHANTS), October 2019.

6



© 2019 Jörg Ott

Node architecture

�������

�	�������
����

� � �� � �����
��
��

7



• Lua Process VMs: Generic execution platform
• Sensing + actuation hardware: Node-specific capabilities

• Function properties: node capabilities
• Nodes beacon their capabilities + rendezvous information (= SSID)
• Functions contain metadata expressing dependencies
• 2-stage matching

• Mobile node as orchestrator
• Picks devices
• Transfers mobile code – instantiation governed by the executing node
• Collects results

• Different operation modes for code
• Pull for one-time operations
• Push for repeating readings

© 2019 Jörg Ott

Basics and operation

8



• Some prototype observations (ESP32)
• Discovery and code transfer dominate execution time

• Can be amortized across multiple scripts
• BLE + Wi-Fi efficiency have an impact, so does device density

• > 100 concurrent clients with reasonable tasks feasible

9© 2019 Jörg Ott

Basics and operation (2)



• Flexibly programmable smart environments
• Distributed variant of IF-THIS-THEN-THAT (IFTTT)

10© 2019 Jörg Ott

2. Distributed Trigger-Action Framework

Leo Fuchsloch, Teemu Kärkkäinen, Jörg Ott: Trigger-Action Computing in Local Broadcast
Beaconing Networks. Proc. of the ACM CoNEXT Workshop on on Emerging in-Network Computing
Paradigms (ENCP), December 2019, to appear.



• Model comprising trigger and actions
• Flexibly combined by program logic as minimal mobile code

• Function properties: (Type ID, instance ID) | (Definition ID)
• Drivers have custom APIs, need to ensure matching signals
• Metadata messages to announce capabilities

• BLE beacons as a bus system
• To discover nearby devices
• To learn about system capabilities
• To spread rules
• To distribute signals and thus cause actions

• Extreme case: Moving only computation, no data
• Minimal data conveyed implicitly in the data
• Larger data volumes could use auxiliary communication channels

© 2019 Jörg Ott

Basics and operation

11



• Triples: (type, length, type-specific part)

• Trigger / action definitions

• Rule definitions

• Trigger signals

• Descriptor

12© 2019 Jörg Ott

Protocol messages

Definition ID Type ID Instance | * Type-specific

Rule ID Trigger ID Action ID

Type Seq # Type-specific

e.g. (red, green, blue)

Device metadata

list of trigger IDs | Bloom filter



13© 2019 Jörg Ott

Basics and operation (2)



© 2019 Jörg Ott

In-network compute operation

1. Function properties

2. Discovery

3. Choice / Placement

4. Orchestration

5. Execution

int f(int a, int b);
int g(char *c1, char *c2);

char *h (float e);

g ()
g ()

g ()
g ()

g ()

h ()

g ()

g ()
f ()

h ()

g ()

h ()

g ()

g ()
f ()

h ()

14



© 2019 Jörg Ott

In-network compute operation

1. Function properties

2. Discovery

3. Choice / Placement

4. Orchestration

5. Execution

Identification
• Name-based (type [,instance])
• Attribute-based
• Implicit (w/ mobile code)

Parameterization: input, output
• Implicit

Requirements / dependencies
• Implicit
• Dedicated interpreter

15



© 2019 Jörg Ott

In-network compute operation

1. Function properties

2. Discovery

3. Choice / Placement

4. Orchestration

5. Execution

Many flavors of service discovery
• Broadcasting / multicasting
• Anycasting
• Directories
• Function / service routing

• After mapping
• Named-based

Broadcast network
• Beaconing
• Probing

16



© 2019 Jörg Ott

In-network compute operation

1. Function properties

2. Discovery

3. Choice / Placement

4. Orchestration

5. Execution

Different scopes
• Network-wide
• Regional
• Local 

Orchestrator vs. client
Resource consent

Client-driven
• Discovery-based choice
• Function invocation
• Code instantiation 

17



© 2019 Jörg Ott

In-network compute operation

1. Function properties

2. Discovery

3. Choice / Placement

4. Orchestration

5. Execution

Different scopes
• Network-wide
• Regional
• Local 

Orchestrator vs. client
Degree of self-orchestration

Client-driven
• Construction of a process pipe
• Explicit by arranging functions
• Implicit via a bus

18



© 2019 Jörg Ott

In-network compute operation

1. Function properties

2. Discovery

3. Choice / Placement

4. Orchestration

5. Execution

Execution of functions
• “Server” instances waiting for 

calls
• Continuously running
• Dynamically instantiated

Data flow
• Point-to-point transport
• Encapsulated in beacons

Program flow
• Via orchestrator call sequence
• Via addresses in beacons

19



• In-network computing for broadcast networks
• Compute, storage, and networking in each node
• Beyond a distributed system as network complexity grows
• Different levels of abstraction and expressiveness
• Even small code sniplets may suffice

Two meta aspects = challenges
• Pushing control into the network 

• Moving away from a central coordinator constantly in charge
• Autonomous in-network operation of program logic

• Abstracting composability via API signatures
• Which outputs can connect to which inputs
• Need more than a Unix or packet pipe model
• Data + metadata 

© 2019 Jörg Ott

Conclusion

20


