SRv6 for Deterministic Networking

draft-geng-spring-srv6-for-detnet-00
draft-geng-dp-sol-srv6-01

Xuesong Geng (gengxuesong@huawei.com)
Mach Chen (mach.chen@huawei.com)
Yongqing Zhu (zhuyq@gsta.com)
Why Deterministic Networking?

<table>
<thead>
<tr>
<th>Use case category</th>
<th>Use Cases</th>
<th>User Experienced Data Rate</th>
<th>E2E Latency</th>
<th>Speed</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>eMBB</td>
<td>UHD, VR, AR...</td>
<td>DL: 1 Gbps, UL: 500 Mbps</td>
<td>10 ms</td>
<td>Pedestrian</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>High speed train</td>
<td>DL: 50 Mbps, UL: 25 Mbps</td>
<td>10 ms</td>
<td>Up to 500 km/h</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>3D Connectivity: Aircrafts</td>
<td>DL: 15 Mbps, UL: 7.5 Mbps</td>
<td>10 ms</td>
<td>Up to 1000 km/h</td>
<td>Extremely High</td>
</tr>
<tr>
<td></td>
<td>Ultra-low cost networks</td>
<td>DL: 10 Mbps, UL: 10 Mbps</td>
<td>50 ms</td>
<td>0-50 km/h</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>900 Mbps everywhere</td>
<td>DL: 50 Mbps, UL: 15 Mbps</td>
<td>10 ms</td>
<td>0-120 km/h</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Tactile internet</td>
<td>DL: 50 Mbps, UL: 25 Mbps</td>
<td><1 ms</td>
<td>Pedestrian</td>
<td>Medium</td>
</tr>
<tr>
<td>Mission Critical IoT</td>
<td>Automatic traffic control/driving</td>
<td>DL: 50 kbps-10 Mbps; UL: a few kbps-10 Mbps</td>
<td>1 ms</td>
<td>0-500 km/h</td>
<td>Extremely High</td>
</tr>
<tr>
<td></td>
<td>Collaborative robots</td>
<td>DL: 50 kbps-10 Mbps; UL: a few kbps-10 Mbps</td>
<td>1 ms</td>
<td>0-500 km/h</td>
<td>Extremely High</td>
</tr>
<tr>
<td></td>
<td>Remote object manipulation—Remote surgery</td>
<td>DL: 50 kbps-10 Mbps; UL: a few kbps-10 Mbps</td>
<td>1 ms</td>
<td>0-500 km/h</td>
<td>Extremely High</td>
</tr>
<tr>
<td></td>
<td>Public safety</td>
<td>DL: 10 Mbps, UL: 10 Mbps</td>
<td>10 ms</td>
<td>0-500 km/h</td>
<td>Extremely High</td>
</tr>
<tr>
<td></td>
<td>3D Connectivity: Drones</td>
<td>DL: 10 Mbps, UL: 10 Mbps</td>
<td>10 ms</td>
<td>0-500 km/h</td>
<td>Extremely High</td>
</tr>
</tbody>
</table>

- **New Applications in 5G**
 - AR, VR
 - Industry
 - IoT

- **New Requirement for Network**
 - Strict SLA Guarantee: E2E Latency, Reliability...

- **New Technologies?**
 - Deterministic Networking (DetNet)
 - DetNet provides a capability to carry specified data flows for real-time applications with extremely low data loss rates and bounded latency within a network domain
DetNet Overview

• Key Technologies
 • Resource Allocation:
 • e.g., buffer space or link bandwidth, for DetNet flow
 • Resource allocation addresses two of the DetNet QoS requirements: latency and no congestion loss packet loss.
 • Service Protection:
 • DetNet flow is replicated and transmitted through non-parallel paths at the same time
 • Redundant DetNet flows are eliminated in a merge node.
 • No packet loss when one of the path fails compared to traditional switchover from active path to standby path
 • Explicit Route:
 • The paths are typically explicit routes so that they do not normally suffer temporary interruptions caused by the convergence of routing
Implement DetNet in an SRv6 Domain

• Why SRv6?

 • Source Routing: SRv6 could steer the DetNet flows through the network according to an explicit path with allocated resources;

 • Network Programming: SRv6 applies instructions (functions) to packets in some special nodes (or even all the nodes) along the path in order to guarantee, e.g., service protection and congestion protection.

 • Meta Data: SRH TLVs support meta-data for segment processing, which could be used to carry DetNet meta data, e.g., flow identification and sequence number.

• Why not?!

*RFC 8402: Segment Routing Architecture
draft-ietf-6man-segment-routing-header-26: IPv6 Segment Routing Header (SRH)
SRv6 for DetNet Service Protection

Data Plane

- Inserts the SRv6 Policy that will steer the packet from Ingress to the destination. Flow Identification and Sequence Number are carried in the SRH.
- Replicates the payload and IPv6 Header with the SRH Binding two different SRv6 Policies respectively.
- Eliminates the redundant packets. Binds a new SRv6 Policy to the survival packet, which steers the packet from Relay Node 2 to Egress.
- Decapsulates the outer IPv6 header. Sends the inter packet to the End Station 2.

Control Plane

- Controller->Edge node: Computes a P2MP2P path, including replication nodes and elimination nodes. Sends the path computation result to the edge node through PCEP/BGP extensions.
- Edge node->Controller: Sends a path computation requirement containing that service protection in order to have ultra-reliability through PCEP/BGP extensions.
- Controller->Relay Node: Replication node and elimination node should be configured to identify DetNet flows by flow identifications; After replication or elimination, the explicit path to the next relay is also required through BGP extensions or Netconf YANG.
DetNet SRv6 Data Plane Requirement

- A method of identifying the DetNet payload type;

- A suitable explicit route to deliver the DetNet flow; (e.g., Segment List in SRH)

- A method of indicating packet processing, such as PREOF; (detailed in next slides)

- A method of identifying the DetNet flow; (detailed in next slides)

- A method of carrying DetNet sequence number; (detailed in next slides)

- A method of carrying queuing and forwarding indication to do congestion protection; (not now)
Flow Identification (20 bits) and Sequence Number (28 bits) are carried in:

- **Option 1**: SRH TLVs
- **Option 2**: Arguments in the SID for Relay Node
- **Option 3**: DetNet SID in segment list
- **Option 4**: DetNet SRH inside the SRH (Not Reasonable)
SRv6 Data Plane Solution Option1-Encapsulation

- Flow Identification (32 bits) and Sequence Number (32 bits) are carried as TLVs.

- **IPv6 Header**
 - Next Header
 - Hdr Ext Len
 - Routing Type
 - Segment Left
 - Last Entry
 - Flags
 - Tag

- **SRH**
 - Location & Function
 - (Segment List[0] for relay node or edge node)
 - SID for Relay Node

- **Payload**
 - Segment List[n]
 - Optional TLVs

SRH

- **Type**: 8 bits, to be assigned by IANA.
- **Length**: 8.
- **RESERVED**: 28 bits. MUST be 0 on transmission and ignored on receipt.
- **Flow Identification**: 20 bits, which is used for identifying DetNet flow.
- **Sequence Number**: 28 bits, which is used for indicating sequence number of a DetNet flow.
SRv6 Data Plane Solution Option1-Replication Function

- End. B. Replication: Packet Replication Function

1. IF NH=SRH & SL>0 THEN
2. extract the DetNet TLV values from the SRH
3. create two new outer IPv6+SRH headers: IPv6-SRH-1 and IPv6-SRH-2; Insert the policy-instructed segment lists in each newly created SRH (SRH-1 and SRH-2). Also, add the extracted DetNet TLVs into SRH-1 and SRH-2.
4. remove the incoming outer IPv6+SRH header.
5. create a duplication of the incoming packet.
6. encapsulate the original packet into the first outer IPv6+SRH header: (IPv6-SRH-1) (original packet)
7. encapsulate the duplicate packet into the second outer IPv6+SRH header: (IPv6-SRH-2) (duplicate packet)
8. set the IPv6 SA as the local address of this node.
9. set the IPv6 DA of IPv6-SRH-1 to the first segment of the SRv6 Policy in of SRH-1 segment list.
10. set the IPv6 DA of IPv6-SRH-2 to the first segment of the SRv6 Policy in of SRH-2 segment list.
11. ELSE
12. drop the packet
SRv6 Data Plane Solution Option2-Elimination Function

• End. B. Elimination: Packet Elimination Function
 1. IF NH=SRH & SL>0 & "the packet is not a redundant packet" , THEN
 2. do not decrement SL nor update the IPv6 DA with SRH[SL]
 3. extract the value of DetNet TLVs from the SRH
 4. create a new outer IPv6+SRH header
 5. insert the policy-instructed segment lists in the newly create SRH and add the retrieved DetNet TLVs in the newly created SRH
 6. remove the incoming outer IPv6+SRH header.
 7. set the IPv6 DA to the first segment of the SRv6 Policy in the newly created SRH
 8. ELSE
 9. drop the packet
DetNet SRv6 Data Plane Solution Example

IPv6

T1
(R1,T1;SL=2)
(ES1,ES2)

T2
(R1,T2)
(R2,T2;SL=1)
(ES1,ES2)

T3
(R1,T3)
(R2,T3;SL=1)
(ES1,ES2)

T4
(R2,T4)
(Eg,T4;SL=2)
(ES1,ES2)

Eg
(R2,Eg)
(Eg,T4;SL=1)
(ES1,ES2)

End Station 1
(ES1,ES2)

End Station 2
(ES1,ES2)
Next Step

• Collect Feedback from SPRING
• Comments and discussions in the mailing list
• Seek for Corporation
Thanks
SRv6 Based PREOF

IPv6

Ingress

Relay Node 1

[Replication]

Transit Node 1

Transit Node 2

Relay Node 2

[Elimination]

Egress

End Station 1

End Station 2

IPv6 Header

IPv6 Header 1

SRH 1

IPv6 Header

IPv6 Header 2

SRH 2

IPv6 Header

IPv6 Header 3

SRH 3

IPv6 Header

IPv6 Header 4

SRH 4

IPv6 Header

IPv6 Header
SRv6 based DetNet

- SRv6 Network Programming:
 - Service Protection:
 - Carry Flow Identification and Sequence Number in optional TLV;
 - Define new functions for packet replication & elimination
 - Resource Allocation
 - Define new functions for scheduling/reserved resource
 - Explicit Path
 - SID List indicates the explicit route

SRv6 SID (128bit)

Service Protection
Avoiding packet loss because of random media errors and equipment failures
- Packet replication elimination and ordering

Resource Allocation
Avoiding packet loss and latency because of congestion
- Resource reservation for DetNet flows + Queuing Management (Shaping, Scheduling)

Explicit Route
Specify explicit routes to control end-2-end latency
- Segment Routing, RSVP-TE

Locator Function (ARG)
New functions for DetNet, e.g., packet replication/elimination/scheduling