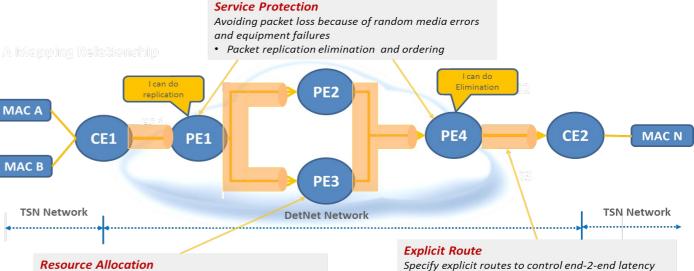
SRv6 for Deterministic Networking

draft-geng-spring-srv6-for-detnet-00 draft-geng-dp-sol-srv6-01

Xuesong Geng (gengxuesong@huawei.com)

Mach Chen (<u>mach.chen@huawei.com</u>)

Yongqing Zhu (zhuyq@gsta.com)


Why Deterministic Networking?

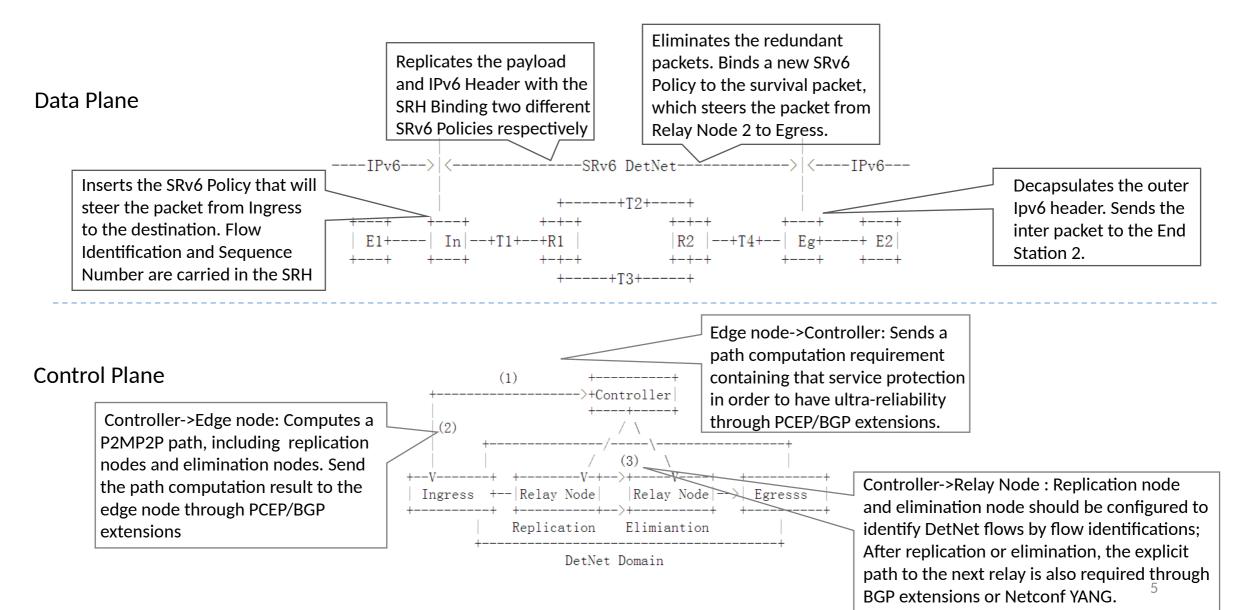
Use case category	Use Cases	User Experienced Data Rate	E2E Latency	Speed	Reliability
eMBB	UHD, VR, AR	DL: 1 Gbps, UL: 500 Mbps	10 <u>ms</u>	Pedestrian	High
	High speed train	DL: 50 Mbps, UL: 25 Mbps	10 ms	Up to 500 km/h	High
	3D Connectivity: Aircrafts	DL: 15 Mbps, UL: 7.5 Mbps	10 <u>ms</u>	Up to 1000 km/h	Extremely High
	Ultra-low cost networks	DL: 10 Mbps, UL: 10 Mbps	50 ms	0-50 km/h	Low
	50 Mbps everywhere	DL: 50 Mbps, UL: 25 Mbps	10 ms	0-120 km/h	Medium
	Tactile internet	DL: 50 Mbps, UL: 25 Mbps	<1 <u>ms</u>	Pedestrian	Medium
Mission Critical <u>LoT</u>	Automatic traffic control/driving Collaborative robots Remote object manipulation –Remote surgery	DL: 50 kbps~10 bps; UL: a few bps~10 Mbps	1 <u>ms</u>	0-500 km/h	Extremely High
	eHealth: Extreme Life Critical Public safety 3D Connectivity: Drones	DL: 10 Mbps, UL: 10 Mbps	10 <u>ms</u>	0-500 km/h	Extremely High
Massive LoT	Smart <u>wearables (</u> clothes) Sensor networks	Low (typically 1-100 kbps)	Seconds to hours	0-500 km/h	Medium
	Mobile video surveillance	DL: 300 Mbps, UL: 50 Mbps	10 <u>ms</u>	0-120 km/h	Medium
	News and information	DL: Up to 200 Mbps	<100 ms	0-500 km/h	Medium
	Local, Regional, National	UL: Modest (e.g. 500 kbps)			
	Natural disaster	DL: 0.1-1 Mbps, UL: 0.1-1 Mbps	not critical	0-120 km/h	High

- New Applications in 5G
 - AR, VR
 - Industry
 - IoT
- New Requirement for Network
 - Strict SLA Guarantee: E2E Latency, Reliability...
- New Technologies?
 - Deterministic Networking(DetNet)
 - DetNet provides a capability to carry specified data flows for real-time applicatio ns with extremely low data loss rates and bounded latency within a network do main

DetNet Overview

- Key Technologies
 - Resource Allocation:
 - e.g., buffer space or link bandwidth, for DetNet flow
 - Service Protection:
 - DetNet flow is replicated and transmitted through non-parallel paths
 at the same time
 - Redundant DetNet flows are eliminated in a merge node.
 - No packet loss when one of the path fails compared to traditional switchover from active path to standby path
 - Explicit Route:
 - The paths are typically explicit routes so that they do not normally suffer temporary interruptions caused by the convergence of routing

Avoiding packet loss and latency because of congestion • Resource reservation for DetNet flows + Queuing Management (Shaping, Scheduling) • Segment Routing, RSVP-TE


Implement DetNet in an SRv6 Domain

- Why SRv6?
 - Source Routing: SRv6 could steer the DetNet flows through the network according to an explicit path with allocated resour ces;
 - Network Programming: SRv6 applies instructions (functions) to packets in some special nodes (or even all the nodes) along the path in order to guarantee, e.g., *service* protection and congestion protection.
 - Meta Data: SRH TLVs support meta-data for segment processing, which could be used to carry DetNet meta data, e.g., flow identification and sequence number.
- Why not?!

*RFC 8402: Segment Routing Architecture

*draft-ietf-6man-segment-routing-header-26: IPv6 Segment Routing Header (SRH)

SRv6 for DetNet Service Protection

DetNet SRv6 Data Plane Requirement

- A method of identifying the DetNet payload type;
- A suitable explicit route to deliver the DetNet flow ; (e.g., Segment List in SRH)
- A method of indicating packet processing, such as PREOF; (detailed in next slides)
- A method of identifying the DetNet flow; (detailed in next slides)
- A method of carrying DetNet sequence number; (detailed in next slides)
- A method of carrying queuing and forwarding indication to do congestion protection; (not now)

DetNet SRv6 Data Plane Solution

Flow Identification(20bits) and Sequence Number(28bits) a e carried in:

- Option1: SRH TLVs
- **Opiton2 :** arguments in the SID for Relay Node
- **Option3:** DetNet SID in segment list
- **Option4:** DetNet SRH inside the SRH (Not Reasonable)

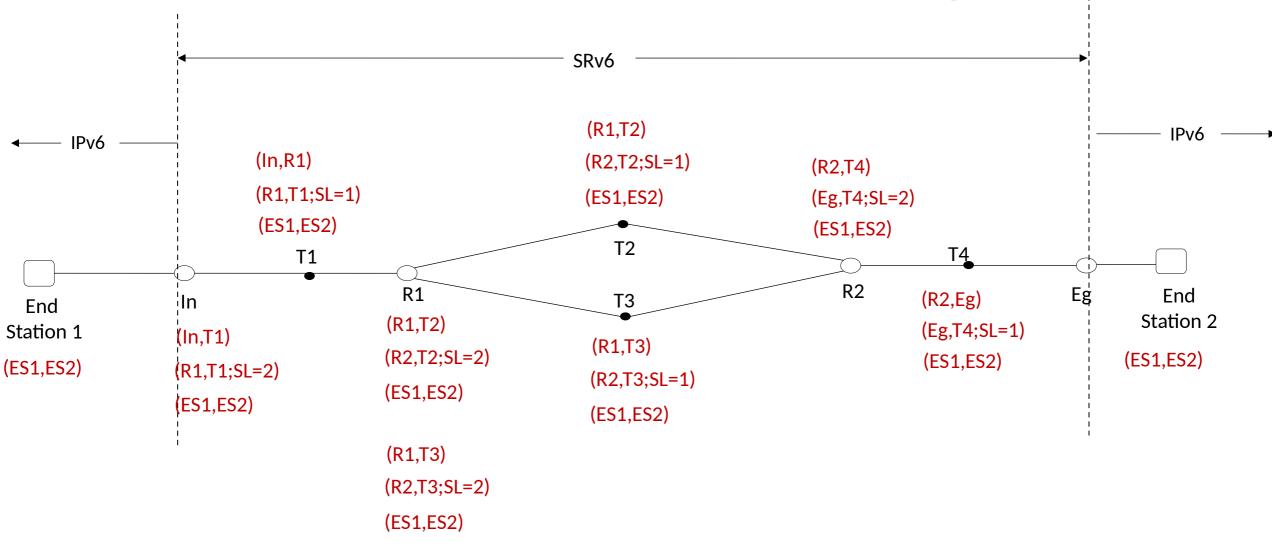
4		Next	t Header		
	Optional Type Length Value objects (variable)				
3	Segment List[n] (128 bits IPv6 address)				
+-+-+-+-	-+-+-+-+		+-+-+-+-+-+	-+	-+-+-+-
•-+-+-+-+	-+-+-+-+	-+-+-+-+-+-+-+-	+-+-+-+-+-+	-+-++-+-+-+-+-+-+-+-+-+++++	-+-+-+-
Last Er	+-+-+++++++++++++++++++++++++++++++++++	Flags -+-+-+-+-++- ent List[0] (12	 +-+-+-+-+-+-+-+-++	Tag -+-+-+-+-+-+-+-+-+-++	-++-
Next Hea	-+-+-+-+	-+-+-+-+-+-+-	Routing T +-+-+-+-+-+-+-+-+-+-+++++	ype Segment: -+-+-+-+-+-+-+-+-+++	s Left -+-+-+
+-+-+-+-	-+-+-+-+	1 8 9 0 1 2 3 4 5 -+-+-+-+-+-+-+	+-+-+-+-+	-+	-+-+-+-

SRv6 Data Plane Solution Option1-Encapsulation

• Flow Identification(32bits) and Sequence Number(32bits) are carried as TLVs

	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +++++++++++++++++++++++++++++++++++		0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+++++++++++++++++++++++++++++++++++				
			+-+-+-+-+-+ Segment Left │	Type Length RESERVED +-+-+++++++++++++++++++++++++++++++++			 +-+-
	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-+-+-+-+-+-++	·+-+-+-+-+-+-+-++	+-+-+-+-+-+-+++++++++	ts, to be assigned by I	+-	·+-+
IPv6 Header	Location & Function (Segment List[0] for relay node or edge node)		SID for Relay Node	 Length: 8. RESERVED: 28 bits, MUST be 0 on transmission and ignored on receipt. Flow Identification: 20 bits, which is used for identifying DetNet flow. 			
SRH → IPv6 Header	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	··· -+-+-+-+-+-+-+-+-+-+-+++++-	-+-+-+-+-+-+-+-+-+-+-+-++++++	0 0 1 2 3 4 5	1 6 7 8 9 0 1 2 3 4 5	2 6 7 8 9 0 1 2 3 4 5 6 7 8 9	3 0 1
Payload	Segment List[n]			+-+-++ Type +-+-+++ RESE	Length RVED	RESERVED Flow Identification	+-+-+ +-+-+
	Opti		 Type: 8 bits, to be assigned by IANA. Length: 8. RESERVED: 20 bits. MUST be 0 on transmission and ignored on receipt. Sequence Number: 28 bits, which is used for indicating 				

sequence number of a DetNet flow.

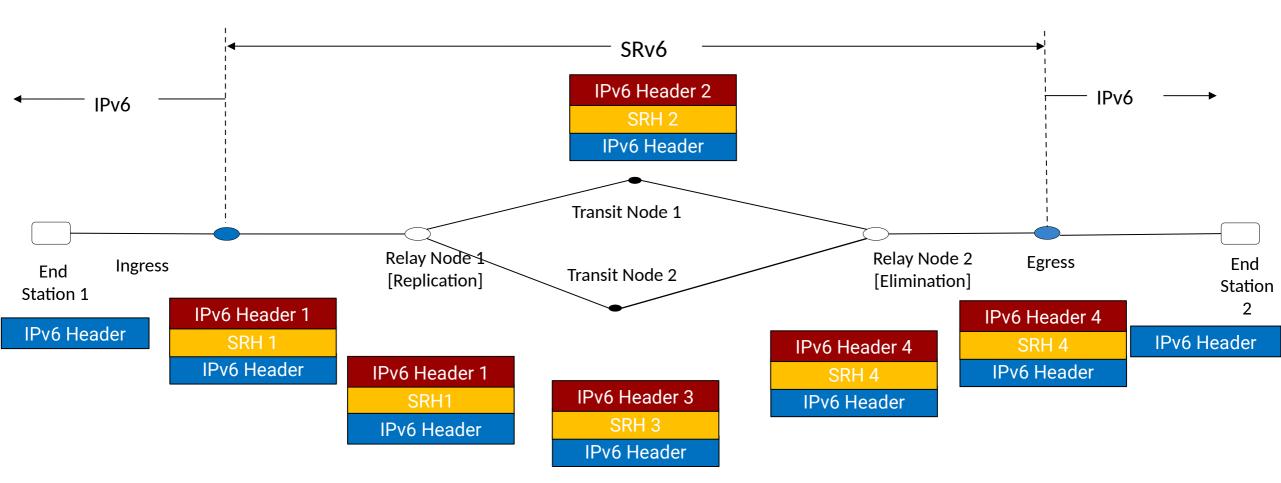

SRv6 Data Plane Solution Option1-Replication Fun ction

- End. B. Replication: Packet Replication Function
 - 1. IF NH=SRH & SL>0 THEN
 - 2. extract the DetNet TLV values from the SRH
 - 3. create two new outer IPv6+SRH headers: IPv6-SRH-1 and IPv6-SRH-2; Insert the policy-instructed segment lists in each newly created SRH (SRH-1 and SRH-2). Also, add the extracted DetNet TLVs into SRH-1 and SRH-2.
 - 4. remove the incoming outer IPv6+SRH header.
 - 5. create a duplication of the incoming packet.
 - 6. encapsulate the original packet into the first outer IPv6+SRH header: (IPv6-SRH-1) (original packet)
 - 7. encapsulate the duplicate packet into the second outer IPv6+SRH header: (IPv6-SRH-2) (duplicate packet)
 - 8. set the IPv6 SA as the local address of this node.
 - 9. set the IPv6 DA of IPv6-SRH-1 to the first segment of the SRv6 Policy in of SRH-1 segment list.
 - 10. set the IPv6 DA of IPv6-SRH-2 to the first segment of the SRv6 Policy in of SRH-2 segment list.
 - 11. ELSE
 - 12. drop the packet

SRv6 Data Plane Solution Option2-Elimination Function

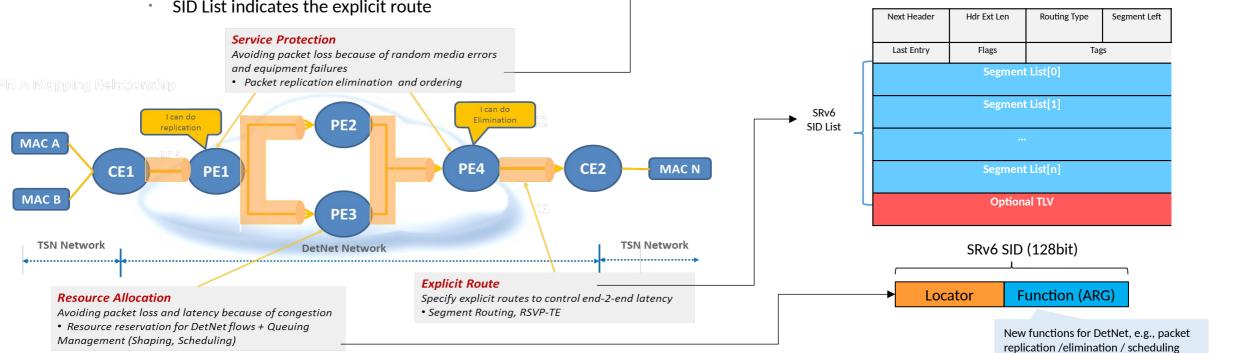
- End. B. Elimination: Packet Elimination Function
 - 1. IF NH=SRH & SL>0 & "the packet is not a redundant packet", THEN
 - 2. do not decrement SL nor update the IPv6 DA with SRH[SL]
 - 3. extract the value of DetNet TLVs from the SRH
 - 4. create a new outer IPv6+SRH header
 - 5. insert the policy-instructed segment lists in the newly create SRH and add the retrieved DetNet TLVs in the newly created SRH
 - 6. remove the incoming outer IPv6+SRH header.
 - 7. set the IPv6 DA to the first segment of the SRv6 Policy in the newly created SRH
 - 8. ELSE
 - 9. drop the packet

DetNet SRv6 Data Plane Solution Example



Next Step

- Collect Feedback from SPRING
- Comments and discussions in the mailing list
- Seek for Corporation


Thanks

SRv6 Based PREOF

SRv6 based DetNet

- SRv6 Network Programming: .
 - Service Protection:
 - Carry Flow Identification and Sequence Number in optional TLV;
 - Define new functions for packet replication & elimination
 - **Resource Allocation**
 - Define new functions for scheduling/reserved resource
 - **Explicit Path**
 - SID List indicates the explicit route

Sequence Number TLV

Length

Type

RESERVE

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Sequence Number

RESERVEI

Flow Identification TLV

RESERVED

Flow Identification

Length

Type

RESERVED