SIP Auto Peer

draft-kinamdar-dispatch-sip-auto-peer-01

C. Jennings K. Inamdar S. Narayanan

Agenda

- Problem Space
- Solution Overview
- Asks

Problem Space

- Administrators usually uncover a large number of problems when the trunk is setup.
- Requires time-consuming interaction between the administrator and service provider to ensure everything is working.
- Deployment times increase significantly due to interoperability problems.

Magnitude of Problem

- A total of 6000 support cases opened with Cisco last year for its Enterprise SBC, CUBE
- 22% of these cases were directly related to ITSP interoperability
- Multiply this by the number of enterprise SBC vendors to get a rough estimate of the magnitude of the problem
- Still a significant number of enterprise networks are yet to migrate from TDM/Analog to SIP trunking ... the problem isn't going away anytime soon!

Current Solutions

- SIP Connect Technical Recommendations
- Service Provider Documentation

Issues Still Persist...

- What happens if the ITSP forks calls? The SBC has to be configured to either pass through all responses or pass through only the first confirmed dialog.
- What happens for hairpinned calls? Does the ITSP expect the enterprise to send the first RTP packet? Can the enterprise network "hand-off" the call?
- How many re-INVITES with or without SDP change can be sent to the ITSP?
- Is the called party number in the Request-URI? To header field or the P-Called-Party ID?
- How is the user portion of the *From header field* formatted? Is it any number or specifically a number within the DID range allocated to the enterprise?
- Will the ITSP reject calls that have a video media line (along with an audio media line) or follow the offer/answer model and simply set the video media line to 0?

SIP Auto Peer

- SIP Auto Peer is a framework that converts answers to questions typically needed by an administrator to setup a SIP trunk into a machine workable format.
- Parameters are encoded according to the YANG model defined in the draft and communicated to the enterprise edge element.
- Parameters may be subsequently parsed by automaton on the edge element and converted to configuration.
- Parameters are a combination of both basic (e.g. registrar, call control IP) and nuanced (e.g. who sends the first RTP packet for a hairpinned call) parameters.
- Only some parameters are included in Version 00 and 01 of this draft...we hope to work with the larger community to define a robust/complete parameter set.

High-Level Overview

*** Body encoded in XML or JSON

Why HTTPS?

- HTTPS is the path of least disruption no changes required to SIP stacks.
- Exchange of SIP traffic between enterprise and service provider networks usually requires SIP trunk registration.
- Exchange of the capability set after trunk registration is well pointless.
- Most SBCs also have an HTTP stack built-in.

XML or JSON?

XML

Pros:

- XML and configuration files are synonymous.
- SBCs usually have XML parsers built-in
- Strong schema constraint languages for XML

Cons:

- Bulky, verbose
- Requires translation of doc to structure

JSON

Pros:

- Compact and more readable
- Data formatted as a map

Cons:

 Can have issues with weakly structured data

Yang Model

- Parameters applicable to any vendor SBC for SIP trunk registration
- Significant media parameters
- Security specifications
- SIP extensions supported by SP

<pre>module: ietf-sip-auto-peering</pre>	
+rw peering-info	
+rw variant s	string
+rw transport-info	
+rw transport?	enumeration
+rw registrar*	host-port
+rw registrarRealm?	string
+rw callControl*	host-port
+rw dns*	inet:ip-address
+rw outboundProxy?	host-port
+rw call-specs	
+rw earlyMedia?	boolean
+rw signalingForking	g? boolean
+rw supportedMethods	? string
+rw media	
+rw mediaTypeAudio	
+rw mediaFormat*	string
+rw fax	
+rw protocol* e	enumeration
+rw rtp	
+rw RTPTrigger?	boolean
+rw symmetricRTP?	boolean
+rw rtcp	
+rw symmetricRTCP	?? boolean
+rw RTCPfeedback?	boolean
+rw dtmf	
+rw payloadNumber? int8	
+rw iteration? boolean	
+rw security	
+rw signaling	
+rw type? string	
+rw version? string	
+rw mediaSecurity	
+rw keyManagement	: string
+rw extensions? s	string

Example Capability Set

<peering-info xmlns="urn:ietf:params:xml:ns:yang:ietf-peering"</pre> xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:ietf:params:xml:ns:yang:ietf-peering_ietf-peering.xsd"> <variant>1.0</variant> <transport-info> <transport>TCP;TLS;UDP</transport> <registrar>registrar1.voip.example.com:5060</registrar> <registrar>registrar2.voip.example.com:5060</registrar> <registrarRealm>voip.example.com</registrarRealm> <callControl>callServer1.voip.example.com:5060</callControl> <callControl>192.168.12.25:5065</callControl> <dns>8.8.8.8</dns> <dns>208.67.222.222</dns> <outboundProxy>0.0.0/outboundProxy> </transport-info> <call-specs> <earlyMedia>true</earlyMedia> <signalingForking>false</signalingForking> <supportedMethods>INVITE;OPTIONS;BYE;CANCEL;ACK;PRACK;SUBSCRIBE;NOTIFY;REGISTER</supportedMethods> </call-specs> <media> <mediaTypeAudio> <dtmf> <mediaFormat>PCMU;rate=8000;ptime=20</mediaFormat> <payloadNumber>101</payloadNumber> <mediaFormat> G729;rate=8000;annexb=yes</mediaFormat> <iteration>@</iteration> <mediaFormat>G722;rate=8000;bitrate=56k,64k</mediaFormat> </dtmf> </mediaTypeAudio> <fax> <security> <protocol>pass-through</protocol> <signaling> <protocol>t38</protocol></protocol> <type>TLS</type> </fax> <version>1.0;1.2</version> <rtp> </signaling> <RTPTrigger>true</RTPTrigger> <mediaSecurity> <symmetricRTP>true</symmetricRTP> <keyManagement>SDES;DTLS-SRTP,version=1.2</keyManagement> </rtp> </mediaSecurity> <rtcp> </security> <symmetricRTCP>true</symmetricRTCP> <extensions>timer;rel100;gin;path</extensions> <RTCPFeedback>true</RTCPFeedback> </peering-response> </rtcp> </media>

The way forward...

- Objections / Challenges?
- Refining the capability set. Additional parameters?
 - $\circ~$ URI Scheme of calls TEL or SIP URIs?
 - \circ $\,$ Full or Compact form headers?
 - DID block allocated by ITSP?
 - Emergency Numbers?
- How should the draft be taken forward?
 - Mini Workgroup
 - SIP Core
 - AD Sponsored

Thank You