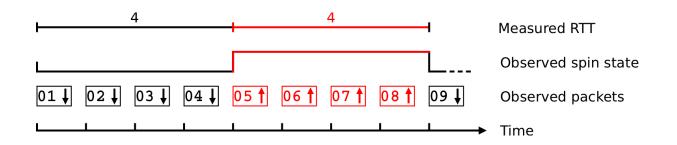
HotRFC – IETF 106 Singapore Explicit measurements: Round Trip Packet Loss

draft-cfb-tsvwg-spinbit-new-measurements


Singapore, November 2019, IETF 106 – TSVWG

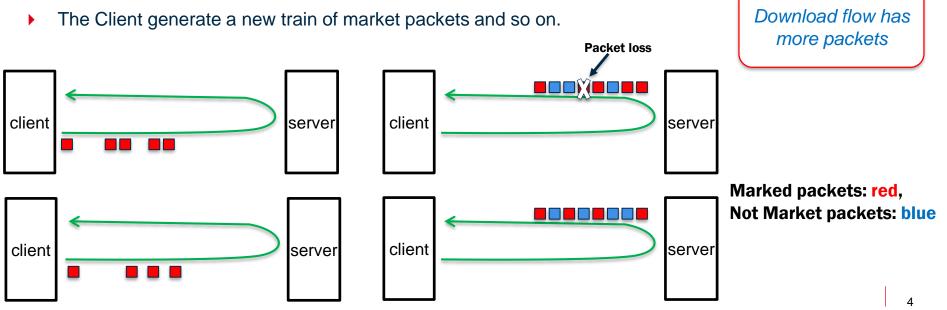
Mauro COCIGLIO (Telecom Italia - TIM) Fabio BULGARELLA (Telecom Italia - TIM) Giuseppe FIOCCOLA (Huawei) Riccardo SISTO (Politecnico di Torino)

Explicit in-band measurements: Spin Bit

- > Spin bit for RTT measurement was the first case of explicit in-band measurement.
- It's implemented in QUIC protocol (<u>https://www.ietfjournal.org/enabling-internet-measurement-with-the-quic-spin-bit/</u>)
- The spinbit idea is to create a square wave signal on the data flow, using a bit, whose length is equal to RTT.
- An observer in the middle (wherever is located) can measure the end-to-end RTT only watching the spinbit.

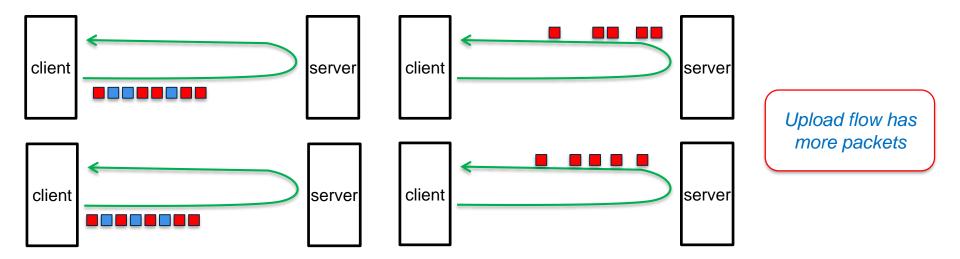
RoundTrip Packet Loss (PL bit)

• A new performance metric, the RoundTrip Packet Loss


Measured on production traffic between Client and Server.

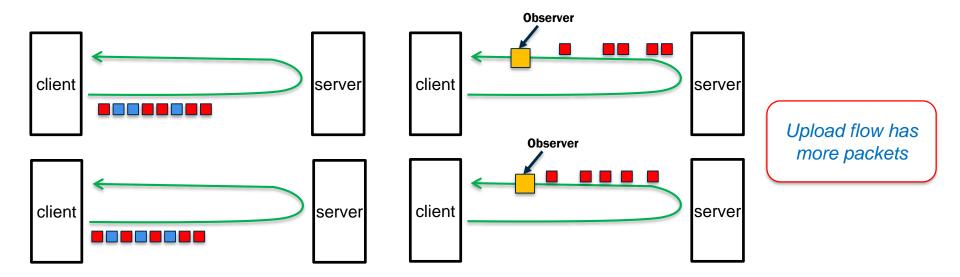
How it works:

- The Client marks «a train» of production packets (using the PL bit) and these marked packets «bounces» between Client and Server to complete 2 rounds.
- Client and Server «reflects» marked packets by marking production packets flowing in the opposite direction.
- An Observer counts the marked packets during the 2 rounds and compares numbers to find losses.
- **The main issue**: Upload and Download usually have different packet rates.
 - QUESTION: How many packets to mark to avoid marked packets congestion on the slowest traffic direction?
 - ANSWER: the number of packets that transit, in the marking period, on the slowest direction (it's implemented using a token system).


Roundtrip Packet Loss: how it works (1)

- The Client generate a train of market packets (using the Packet Loss bit)
- The Server «reflects» these packets (marking production packets flowing in the opposite direction). The Server inserts some not marked packets if download flow has more packets than upload flow.
- The Client reflects the marked packets.
- The Server again reflects the marked packets

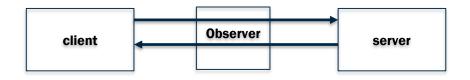
Roundtrip Packet Loss: how it works (2)


When upload flow has more packets than download flow we use a token system to maintain the same marked packets rate on both directions (upload and download):

Marked packets: red, Not Marked packets: blue

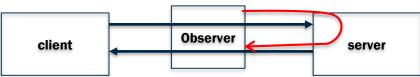
Roundtrip Packet Loss: the Observer

The Observer in the middle (upstream or downstream) sees the packet train twice and so it calculates the «observer roundtrip packet loss» that, statistically, will be equal to the «end-to-end roundtrip packet loss».


Marked packets: red, Not Marked packets: blue

How to know more

- Hackathon project: "QUIC Measurements & SpinDump"
- Draft: <u>https://tools.ietf.org/html/draft-cfb-tsvwg-spinbit-new-measurements-00</u>
- TSVWG meeting: Thursday (10:00-12:00, Canning) draft presentation
- Hackdemo Happy Hour: Monday (18:10-19:40, Moor/Morrison) SpinDump demo
- TSVWG mailing list: <u>tsvwg@ietf.org</u>
- Mail to:
 - mauro.cociglio@telecomitalia.it
 - fabio.bulgarella@guest.telecomitalia.it
 - giuseppe.fioccola@huawei.com
 - riccardo.sisto@polito.it

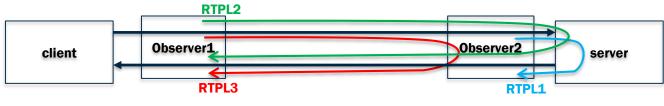

2Point RoundTrip Packet Loss properties (1 observer)

Observer-Client RTPL client Observer server

• Observer-Server RTPL:

RTPL

Appendix slides


2Point RoundTrip Packet Loss properties (2 observers)

• Observer2-Observer1 RTPL:

Observer2-Observer1 Round-Trip: RTPL2 - RTPL1 = RTPL3

• Observer1-Observer2 RTPL:

Observer1-Observer2 Round-Trip: RTPL2 - RTPL1 = RTPL3

Appendix slides