
HTTP priority design team
HTTP WG, IETF 106 Singapore



Design Team Goals
Requirement: Determine a solution for HTTP/3 to have some client-to-server 
priority hinting mechanism that it can ship with. This can be a minimal approach.

The following are potentially in scope (though not all are required):

● Mechanism to indicate that H2 priorities are not being used
● Mechanism to indicate what kind of priority hinting is being used
● Priority hinting mechanism that is non-minimal
● A plan to backport the new priority hinting to H2

Out of scope: Changes that would add complexity that we’re not confident in that 
would risk shipping HTTP/3.



Motivation: HTTP/2, The Wild West

https://speeder.edm.uhasselt.be/www18/

https://speeder.edm.uhasselt.be/www18/


Simulation Results



H2 on large pages (>1MB)

https://speeder.edm.uhasselt.be/www18/

Chrome’s use of H2 is best of browsers, old Edge’s is worst (fair Round Robin)

(btw: fair RR is also H2’s default behaviour…)

Higher line is faster

Round 
Robin

https://speeder.edm.uhasselt.be/www18/


Can we do better?

https://h3.edm.uhasselt.be/

https://h3.edm.uhasselt.be/


https://h3.edm.uhasselt.be/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/

- Can do better than Chrome, 
with simpler schemes

- Server-side (re-)prioritization is

very powerful, but difficult 
across browsers in H2

- Flexibility still needed 
(heterogeneous sites, HOL blocking)

Can we do better?

ATF = “above the fold”, critical resources

https://h3.edm.uhasselt.be/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/


Experimental measurements



Background
All experiments done with gQUIC between Chrome and Google servers

Control group is SPDY priorities: 8 buckets, round robin within a bucket (spdyrr)
gQUIC default

Experiment groups

● Chrome H2 : Linked list (dfifo) - buckets, sequential within a bucket
● FIFO - lowest stream ID first
● LIFO - highest stream ID first
● Round Robin (rr)



YouTube QoE
LIFO

Android 3.34% higher rebuffer rate than SPDY, reduction in video resolution

Desktop 2.6% higher rebuffer rate than SPDY, reduction in video resolution

All other schemes were statistically insignificant

For reference, QUIC had 15.3% fewer rebuffers on Android, 18% on Desktop



Flywheel Data Compression Proxy
● All HTTP requests are proxied to Google servers over a QUIC connection

○ in a sense, the "best case" for prioritization
○ HTTP only; HTTPS requests are not proxied
○ Android Chrome users only

● Summary:
○ Chrome H2 > SPDY > {FIFO, LIFO, RoundRobin}
○ Improvements range from 0.4% faster to 1.7% faster



Flywheel Data Compression Proxy
FirstContentfulPaint relative to H2

(statistically-significant changes only, with 95% CIs, green = H2 is faster)



Flywheel Data Compression Proxy
FirstContentfulPaint relative to SPDY

(statistically-significant changes only, with 95% CIs, green = SDPY is faster, red = SPDY is slower)



AMP
● AMP clicks from the Google Search results page

○ Android Chrome users only
○ Only AMP clicks that were not prerendered

● Summary:
○ SPDY > {Chrome H2, FIFO, LIFO, RoundRobin}
○ Improvements range from 0.5% faster to 1.4% faster



AMP
FirstContentfulPaint relative to SPDY

(statistically-significant changes only, with 95% CIs, green = SPDY is faster)



Summary
New design should therefore:

- Be simpler than HTTP/2 tree
- Work for both H2 and H3
- Allow for expressing both Chrome H2 and SPDY schemes
- Allow easy server-side (re-)prioritization
- Not use Round Robin as the default

The priority draft (draft-kazuho-httpbis-priority) includes all of these.

https://tools.ietf.org/html/draft-kazuho-httpbis-priority-03


Proposed Design
an update to draft-kazuho-httpbis-priority

https://tools.ietf.org/html/draft-kazuho-httpbis-priority-03


Extensible Priorities
Goal: Extensible without changing every client every time

=> Unique Key-value pairs, encoded using Structured Headers

Initially specifies 2 fields, ‘urgency’ and ‘progressive’

‘urgency’ parameter is an integer between -1 and 6

‘progressive’ is 0 or 1
If 0, fifo within an urgency, 1 indicates round-robin



Urgency semantics
The draft details how these are intended to be used in Section 4.1

 -1 prerequisite
0  default
1 to 5 supplementary
6 background 

Semantics enable an origin server to effectively re-prioritize without knowing the 
priority of every other request.

Semantics “hopefully” create more consistency across browsers

https://tools.ietf.org/html/draft-kazuho-httpbis-priority-03#section-4.1


Client to Server over multiplexed HTTP

Two Key Use Cases
Within the ‘server’ - Override client priority

One Common Goal: Provide scheduling hints to the sender

Server

Client

H2 
or 
H3 Server

Client

H2 
or 
H3

Origin

Proxy



Headers as an API
Headers are the standard API for an application using HTTP

Applications could also have a specific API, that’s out of scope for the DT

However, Headers are End-To-End on the wire
Introduces complexities, still need a frame for re-prioritization

Solution: Senders locally consume application headers
Only frames are used to prioritize hop-by-hop
If a server receives this header from a client, it can ignore it

Open Questions: Could/should this be a pseudo-header?
      Can/should this be exposed in the web API? (Whose decision?)



Wire Encoding Goals
The initial priority frame needs to be delivered prior to the HEADERS frame

Client should send first requests with initial priorities
even before it receives the server's SETTINGS

Allow Reprioritization even after a request has been sent



New Frame: HTTP/2
R: Reserved 1-bit field
    0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------------------------------------------------------+
    |R|                        Stream ID (31)                       |
    +---------------------------------------------------------------+
    |                   Priority Field Value (*)                  ...
    +---------------------------------------------------------------+

Only sent on the control stream, because of HTTP/2 extension constraints
MUST be sent immediately preceding corresponding headers

A server only has to remember the most recent 
Reprioritization also on the control stream



New Frame: H3
T: Bit to indicate request Stream ID or Push ID

        0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   [|T|    Empty    |   Prioritized Element ID (i)                ...]
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Priority Field Value (*)                  ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Initially sent on the request stream before headers
Reprioritization on the control stream



Proxy to Origin
‘priority’ header can be sent by proxy

Indicates current priority on the previous hop

‘priority’ response header sent by origin
Indicates to override the client’s priority
Allows specifying a priority if the client specifies nothing

Example Deployment described in better-http-2-prioritization-for-a-faster-web
Issue #57

https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://github.com/kazuho/draft-kazuho-httpbis-priority/issues/57


Negotiation with SETTINGS
Key use cases:
1) The client can indicate it does not use H2 priorities
2) The server expresses what information from the client it wants

Challenge: Either side may send first, neither can wait for the others

Ordered sequence of 8-bit identifiers, with the server’s preference dominating
Up to 4 values in H2 (32 bits), 7 values in H3 (62 bits)

Draft defines:
H2-TREE
URGENCY - May be renamed EXTENSIBLE



Some smaller issues still TBD
Should ‘urgency’ start at -1? A higher value corresponds to higher priority?

What is the best encoding of the key-value pairs?

All Issues: https://github.com/kazuho/draft-kazuho-httpbis-priority/issues

current -1 [0] 1 2 3 4 5 6

option a 0 [1] 2 3 4 5 6 7

option b 7 [6] 5 4 3 2 1 0

https://github.com/kazuho/draft-kazuho-httpbis-priority/issues


Design Team Goals: Review
Requirement: Determine a solution for HTTP/3 to have some client-to-server 
priority hinting mechanism that it can ship with. This can be a minimal approach.

The following are potentially in scope (though not all are required):

● Mechanism to indicate that H2 priorities are not being used 
● Mechanism to indicate what kind of priority hinting is being used
● Priority hinting mechanism that is non-minimal
● A plan to backport the new priority hinting to H2

Out of scope: Changes that would add complexity that we’re not confident in that 
would risk shipping HTTP/3.



What’s next?
Update the draft to reflect this proposal
Determine if/how to break it up into multiple docs
Close smaller issues

Comments, Questions, Suggestions?
Add to H3, keep as extension?

Thanks to all design team members!  Group Notes 

https://groups.google.com/g/http-priorities-design-team
https://docs.google.com/document/d/1jw1rnFKK0w8lY0LZ54aMMPtb-YSS56-Lt_emKSDArQA/edit?usp=sharing

